
A Hierarchical Approach to the Formal Verification of
Embedded Systems Using MDGs

Subhashini Balakrishnan

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

November 1999

© Subhashini Balakrishnan, 1999

iii

Abstract

A Hierarchical Approach to the Formal Verification of

Embedded Systems Using MDGs

Embedded systems are finding widespread application including communication

systems, factory automation, graphics and imaging systems, medical equipment and even

household appliances. With the increasing emergence of mixed hardware/software

systems, it is important to ensure the correctness of such a system formally, particularly for

real-time and safety critical applications. In this thesis, a hierarchical approach to modeling

and formally verifying a complete embedded system at higher levels of abstraction, using

Multiway Decision Graphs (MDGs), is proposed. The approach is demonstrated on the

embedded software for a mouse controller application on a commercial microcontroller

(PIC 16C71) from Microchip Technologies Inc..

The embedded system is modeled at different levels of the design hierarchy i.e., the

microcontroller RT level, the microcontroller Instruction Set Architecture (ISA), the

embedded software assembly code level and the embedded software flowchart

specification. The correctness of the system hardware platform in implementing its

intended architecture is established by formally verifying the equivalence between the RTL

hardware and the ISA, using the MDG sequential equivalence checking tool. The next step

is taken to verify the particular application embedded in the system by checking the

equivalence between the assembly code and its intended behavior, specified as a flowchart.

iv

Further verification is done on the models through the property checking procedure

provided by the MDG tools. Liveness properties are also checked using the newly

developed MDG model checking procedure.

Inconsistencies in the assembly code with respect to the specification, as published in

the application notes of the manufacturer, were uncovered through the verification

experiments. Given the relatively small CPU time and memory consumption achieved in

the experiments, the verification approach that is adopted was able to verify a whole

embedded system in an automated environment.

v

Acknowledgments

As a student very much interested in design of digital systems, little was known about

formal verification before my graduate studies. My supervisor Prof. Sofiène Tahar

sufficiently motivated me to take up graduate work in this field. Without the enthusiasm

and guidance from Prof. Sofiène Tahar and the MDG group at University of Montreal, I

wouldn’t have been able to complete my thesis work.

I would like to express my special gratitude to Dr. Otmane Ait-Mohamed, Nortel

Networks for showing keen interest in my work and for taking his valuable time to address

my concerns. I also thank Dr. Ying Xu, Nortel Networks, for her time and help in my MDG

model checking experiments. I also enjoyed working with Ali Abbas Mir on the SMV

model checking experiments.

I should mention my friends, Vijay Pisini, Krishnan, Srinivasan, Kumuthini, Rachit and

Seetharaman, who have made my life in school a memorable one. Mr. Tharmagaran and

family were always a source of invaluable support and a sanctuary whenever I needed one.

Above all, next to the love of the Almighty, nothing can replace the love of my

grandparents, my parents, my brothers Giridharan, Jeyendran and family, Karthikeyan and

family, and my husband. It is amazing the way they bring out the best in me. They make

my life worth living.

vi

Dedication

To my wonderful grandparents, Mr. & Mrs.

Panchapagesan, Mr. & Mrs. Ramasamy, and my

darling Geerthan

vii

Table of Contents

Chapter 1 Introduction ...1

1.1 Formal Verification...1

1.2 Formal Verification Methodologies..4

1.3 Embedded Systems...7

1.4 Related Work...8

1.6 Scope of Thesis..10

Chapter 2 Multiway Decision Graphs ..13

2.1 Multiway Decision Graphs..13

2.2 Modeling Hardware with MDGs...14

2.3 MDG-Based Verification..16

Chapter 3 Hierarchical Modeling of Embedded Systems with MDGs21

3.1 Introduction...21

3.2 Microcontroller RTL Architecture..22

3.3 Microcontroller IS Architecture..22

3.4 Embedded Software..24

3.4.1 Embedded Software Behavior...24

3.4.2 Embedded Software Implementation...26

Chapter 4 Hierarchical Verification of Embedded Systems with MDGs28

4.1 Introduction...28

4.2 Hierarchical Verification Approach..29

4.2.1 Verification of the ISA...29

4.2.1 Verification of the Embedded Software...30

viii

Chapter 5 Case Study Application - PIC 16C71 ..34

5.1 The Target Embedded System...34

5.1.1 Hardware RT-Level Architecture..34

5.1.2 Instruction Set Architecture..35

5.1.2 Mouse Controller Software...36

5.2 Hierarchical Modeling of the Target System..39

5.2.1 RTL Architecture...39

5.2.2 Instruction Set Architecture...40

5.2.2 Embedded Software Specification...41

5.2.2 Embedded Software Implementation...42

5.3 Hierarchical Verification of the Target System..42

5.3.1 Verification of the ISA...44

5.3.2 Equivalence Verification of the Embedded Software.............................44

5.4.3 Invariant Checking of the Embedded Software......................................46

5.4.1 Model Checking of the Embedded Software..48

Chapter 6 Conclusion ..52

Bibliography ..55

Appendix A ..63

Appendix B ...64

Appendix C...70

ix

List of Figures

Figure 1.1: A Hierarchical Design Methodology...2

Figure 2.1: MDG for an OR gate..14

Figure 2.2: MDG for a simple ASM ..15

Figure 3.1: An example flowchart and its ASM model..25

Figure 3.2: An example assembly code fragment and its MDG model26

Figure 5.1: Microcontroller architecture (RT-level) ...35

Figure 5.2: General format for instructions in ISA ..37

Figure 5.3: Functional blocks of a serial mouse...38

Figure 5.4: ASM and MDG model of Bit1 of Bitx routine implementation................43

Figure 5.5: Hierarchical Verification Approach ...45

Figure 5.6: State machine corresponding to inputs RA.b2 = 1, CSTAT.b2 = 0............47

Appendix B Figure 1:Flowchart specification of Main routine ...64

Appendix B Figure 2:Flowchart specification of Byte routine..65

Appendix B Figure 3:Flowchart specification of Bit routine...66

Appendix B Figure 4:State diagram of specification of Main routine...............................67

Appendix B Figure 5:State diagram of specification of Byte routine................................68

Appendix B Figure 6:State diagram of specification of Bit routine69

Appendix C Figure 1:Generic black box representation of Embedded Software routines71

x

List of Tables

Table 5.1: Performance statistics of microcontroller hardware verification44

Table 5.2: Performance statistics of embedded software Verification46

Table 5.3: Performance statistics of invariant checking on Bit...................................48

Table 5.4: Performance statistics of MDG model checking49

Table 5.5: Performance statistics of SMV model checking..51

1

Chapter 1

Introduction

1.1 Formal Verification

Hardware and software designs are rapidly increasing in complexity. Traditionally,

testing and simulation are used to check the design correctness. Simulation catches some

problems, but not exhaustively. The increasing concurrence and complexity of designs

exacerbates this problem: detecting every bug resulting from the complex interaction of

concurrent events by simulation becomes highly improbable (or prohibitively time

consuming). Testing and simulation are inadequate to certify that a system behaves

correctly. High costs (time, money, security and possibly lives) are incurred because a

system is typically delivered with design errors, and hence must go through several design

iterations. Improved debugging tools and methodologies are critical to avoid the expenses

and delays resulting from discovering bugs late in the design phase.

To accelerate the design and assure the correctness of complex systems, a hierarchical

design approach, as shown in Figure 1.1 is usually adopted [30]. The designer first

manually derives the requirements of the system as the system behavioral specification.

This specification is then refined manually or using CAD tools into more detailed

descriptions such as register-transfer (RT), logic and mask level descriptions. As the late

detection of design errors is largely responsible for unexpected delays in realizing the

hardware design, it is extremely important to ensure correctness in each design step. With

2

Figure 1.1: A Hierarchical Design Methodology

Concept

Human Designer

Behavioral Specification

Behavioral Synthesis

RTL Description

Logic Synthesis

Logic Description

Design
Verification

Behavioral
Verification

Logic
Verification

Layout SynthesisLayout
Verification

Layout

Manufacturing

Finished Product

Production
Verification

3

correct-by-construction design style, automatic tools, such as behavioral and logic

synthesis techniques can be used to ensure behavioral and gate level design correctness.

However, the refinement process from high-level specification to synthesizable design

usually requires manual fine tuning to achieve high performance. More progress is needed

to automate the design process at higher levels in order to produce designs of the same

quality as is achievable by hand. It is thus essential that the specification (or behavior) and

the intermediate design stages be verified for consistency and correctness with respect to

some user-specified properties or a previous level of the specification, thus making post-

design verification essential.

This situation has prompted interest in verification techniques. Formal methods have

long been developed and advocated within the computing science research community as

providing sound mathematical foundation for the specification, implementation and

verification of computer systems. These methods exploit representations with formally

defined semantics in order to describe abstractly (independent of details of

implementation) the desired functional behavior of a system [4]. Such formalization

methods provide precise and unambiguous system specifications which can be checked for

completeness and internal logical consistency. The mathematical nature of these

specifications enable reasoning about consistency (i.e., whether the system dynamics is

consistent with system’s static properties) and the deduction of consequences of the

specification. These can be checked against the user’s expectations and used to generate

tests for the system implementation.

Specifications in an executable formal language allow direct simulations (animations)

of system behavior, giving early feedback to be compared with user requirements before

full system development is begun. Equally important in the system development process, a

formal specification is a yardstick against which to verify implementations or

4

implementation steps through mathematical proof of the equivalence of abstract and

concrete representations of system operations or data structures [36]. A formally based

development methodology requires in effect that a mathematical theory of the desired

system be created, documented and analysed. This foundation activity entails a greater

proportion of time and effort being invested in the initial pre-design phases of system

development than is now commonly the case.

Thanks to the rigorous discipline imposed by these methods, system development

phases are rendered less error-prone, more systematic and amenable to computer

assistance, and hence higher quality products achieved. Thus, formal verification is

proposed as a method to help certify hardware and software, and consequently, to increase

confidence in new designs. Formally verifying designs may be cost effective in “safety

critical” applications, for systems in high volume or remotely placed, and for systems that

will go through frequent redesign because of changes in technology. Recently, formal

verification has been considered as a powerful complementary approach to simulation and

has made exciting progress [34].

1.2 Formal Verification Methodologies

Various formal verification methodologies have sprung up in the recent past. They could

be classified based on the following:

• Proof method:

- Theorem proving

- Model checking

- Machine equivalence

5

- Language containment/equivalence

- Trace conformance

• User interaction:

- Interactive verification

- Automated verification

• Class of circuits we wish to verify:

- Combinational/Sequential

- Synchronous/Asynchronous

- Pipelined hardware

- Parameterized hardware

1.2.1 Theorem proving

With theorem proving, an implementation and its specification are usually expressed as

first-order or higher-order logic formulas. Their relationship, stated as equivalence or

implication, is regarded as a theorem to be proven within the logic system, using axioms

and inference rules. Thus, theorem proving is a powerful verification technique. It can

provide a unifying framework for various verification tasks at different hierarchical levels.

However, the task of proving complex theorems needs expertise. A theorem prover or proof

checker is a tool developed to partially automate the proof process or to check a manual

proof. Theorem proving systems are being widely used both in the hardware and software

verification, on an industrial scale. Some of the well-known ones are HOL (Higher-Order

Logic) [33], PVS (Prototype Verification System) [49], Nqthm (a Boyer-Moore theorem

prover) [5] and ACL2 [39].

6

1.2.2 FSM-based verification

In FSM-based verification, synchronous sequential designs are modeled as finite state

machines. These models are represented using data structures known as Binary Decision

Diagrams (BDDs). The basic method of verification is based on automated state

enumeration of the FSM, calledreachability analysis[23, 59, 60]. Both equivalence and

property checking can be performed using this technique. Equivalence checking verifies

that an implementation has the same outputs as that of the specification, for all input

sequences, wherein both the implementation and the specification are modeled as FSMs.

Property checking verifies the validity of a specification, expressed as a set of properties,

on an implementation, modeled as an FSM. A well-known approach for property

verification is Computational Tree Logic (CTL) model checking [44]. A specification for

model checking is a collection of properties, expressed in CTL which can concisely capture

temporal relationships between states. The model represents the model of the system which

is to be verified.

The major advantage of the FSM-based verification is automation, apart from rendering

easier formalization of issues like concurrence, fairness etc. But, the two serious drawbacks

are state explosion and boolean representation. The use of Bryant’s ROBDDs [8] reduces

the complexity to linear, with respect to the width of the datapath, for certain kinds of

circuits. This significantly enlarged the useful domain of the FSM-based verification. A

number of tools have been developed, the two well-known among them are the SMV

(Symbolic Model Verifier) [44] and the VIS (Verification Interacting with Synthesis) [6].

The limitations of the FSM-based methods have been attacked in two main directions:

Problem reduction and representation of hardware at different abstraction levels.

7

Problem reduction techniques such as data abstraction, homomorphic reductions, data-

independent systems, or restating a verification problem in terms of the controller alone are

all restricted to the particular problem at hand and the equivalence of the original problem

to the reduced or restricted or restated ones is not always obvious and is not verified

mechanically. This requires a user’s ingenuity for each particular problem.

Recently a number of ROBDD extensions such as BMDs [9], HDDs [16] or K*BMDs

[25] have been developed to represent arithmetic functions more compactly than ROBDDs.

An improvement is the EOBDDs [41] that can have leaf nodes labelled by terms containing

abstract sorts. MDGs, the successor of EOBDDs, allow the labelling of edges to be first

order terms and non-terminal nodes to be abstract variables. ROBDDs, MDDs and

MTBDDs are special cases of MDGs and can be turned into MDGs by transforming them

from graphs representing functions into graphs representing relations.

In this thesis, MDGs are used to model and verify embedded systems, automatically in

a hierarchical manner. Chapter 2 is devoted to giving details on MDGs and the MDG

verification system.

1.3 Embedded systems

Advances in VLSI and synthesis technology have made it flexible to construct powerful

programmable components (microprocessors) as well as complex specialized components.

Today, electronic products consist of a mixture of hardware and software components. An

embedded system is regarded as a product which contains a microprocessor programmed

to carry out some control functions but which is not itself a computer [27]. An embedded

system encompasses a broad class of systems, ranging, in principle, from a simple

8

microprocessor based apparata to complex systems controlling large plants, aircrafts and

the like.

In general [40]:

(1) An embedded system is an electronic system embedded within a given plant or

external process. The external process comprises both a physical system (usually consisting

of different subsystems) and also humans performing some supervising or parameter

setting tasks.

(2) Most embedded systems must fulfill stringent reliability requirements, usually

detailed according to a set of functions to be performed.

1.4 Related Work

In the recent past significant success was attained in verifying microprocessor hardware

designs using various approaches including theorem provers, verification using meta

languages, functional approaches and decision diagram based approaches.

Gordon [32] first verified a simple computer using the LCF_LSM system [31], which

was an early example of how formal proof and mechanical proof-generation could be used

to reason about the design of a microprocessor. Hunt [35] proceeded to verify the

microprocessor FM8501 using Boyer-Moore theorem prover [5]. Hunt was the first to

consider the implementation of a handshaking protocol in a microprocessor system. Cohn

[18, 19, 20] verified the commercial microprocessor VIPER using HOL [33]. Cohn came

up with two level of proofs, the first level dealing with the flow of control, and the second

level dealing with the block level description. The VIPER project shows how the design of

a microprocessor can be subjected to formal analysis in a series of decreasingly abstract

9

levels. Joyce verified the Tamarack-3 microprocessor [38] using HOL. The verification is

done at a high level of abstraction that he did not even mention the width of the datapath.

He gave a generic specification of a simplified multi-layered Tamarack stack, categorized

into a compiler and a microprocessor, and described how to link the compiler to the

microprocessor. Windley [56] also proposed a general methodology for verifying generic

interpreters of micorprogrammed processors, using HOL. Srivas and Bickford [51] verified

the pipelined microprocessor MiniCayuga using the Clio theorem proving system. Tahar

and Kumar [53] proposed a general methodology for verifying pipelined RISC processors

using HOL. Srivas and Miller [52] reported the verification of a modern complex

commercial processor, AAMP5 using PVS [49].

Recently, a number of automatic verification methods have been explored for verifying

microprocessor designs. Burch and Dill’s [12, 37] validity checking algorithm is an

efficient approach for instruction set processor verification. A logic expression

representing the correctness statement is generated using symbolic simulation. The validity

checking algorithm is then used to verify if the expression is valid. With carefully chosen

heuristics to avoid exponential case splitting, the authors verified a subset of the RISC

pipeline processor DLX [12] and a protocol processor [37]. Galter [29] presented a similar

approach for the verification of processors. Two ITE-expressions (If-Then-Else) which

represent the functions of the specification and the implementation are derived using

symbolic execution. They are then compared for syntactic equivalence. A technique called

IF-algebra was developed to simplify the exponentially growing IF expressions. The

Tamarack-3 microprocessor benchmark was verified using this method. Verification

10

methodologies combining symbolic simulation and theorem proving were also explored by

Barringer [3] and Cyrluk and Narendran [24].

As more and more processors are being specialized for embedded applications, there

arose an imperative need to focus on verifying the software embedded in the processors.

Thiry and Claesen [54] suggested a methodology for formally verifying an embedded

software [45] running on a microcontroller [46], using the SMV tool [44]. Their intention

was to model the machine architecture as an instruction interpreter and the assembly code

as a finite state machine. They presented a model of the execution of the embedded

assembly language software on the microcontroller hardware. The model is represented at

the boolean level. They used the flowchart specification of the embedded software to derive

properties of the software routine, and represented them using CTL temporal logic [26].

They verified the properties on the software model using the SMV tool. The SMV uses the

ROBDD symbolic model checking algorithm [11] to find out whether the CTL

specifications are satisfied on the model. More recently, Brock and Hunt [7] specified and

verified programs for the Motorola Complex Arithmetic Digital Signal Processor (CAP)

using ACL-2 theorem-proving system [39]. They completely specified the CAP super-

scalar processor in a high level behavioral model and mechanically verified a simple FIR

filter and a high-speed searching algorithm, represented as machine code, using ACL-2.

1.5 Scope of Thesis

Interest in hardware/software codesign [10] has been on the rise for the past couple of

years, and this interest has been manifesting itself in the emergence of exotic tools to

facilitate the design of entire systems. With the increasing application of mixed hardware/

11

software systems in embedded computers and safety critical systems, there is need to

produce high integrity systems that are correct in all situations. Several authors have

demonstrated the infeasibility of showing that such systems meet ultra-high reliability

requirements through testing alone [13, 42]. Although completely reliable systems cannot

be guaranteed, the use of formal methods is an alternative approach that systematically

analyses all cases in a design and specification.

The work of Thiry and Claesen [54] and Brock and Hunt [7] provided an inspiration to

expand the scope of formal verification into embedded system verification. While a

symbolic model checker is restricted to representation at the boolean level, a theorem

prover is restricted to users with a lot of expertise and experience. Thus, the motivation

behind this work is the search for a methodology that could handle the modeling and

verification of a whole embedded system at various levels of abstraction, that could enable

the verification to be integrated into the design process. The verification tools based on

MDGs presented a way for experimenting with such an approach. Several successful

hardware verification results have been reported using the MDG verification system [13].

The preliminary results obtained in [1, 2] provided an encouragement behind this work.

In this thesis, an application of formal methods to verify embedded systems in a

hierarchical manner, using Abstract State Machines (ASMs) [23], based on Multiway

Decision Graphs (MDGs) [23] is proposed. The approach is demonstrated on an embedded

software for a serial mouse controller application [45] programmed on the microcontroller

PIC16C71, commercialized by Microchip Technology Inc., [46]. It illustrates the ability to

carry out equivalence checking, in addition to checking properties, using ASMs. Thus, it

12

paves a way for automatic verification of a complete embedded system at higher levels of

abstraction.

The rest of this thesis is organized as follows: Chapter 2 is a brief introduction to

Multiway Decision Graphs and its related verification techniques. Chapters 3 and 4

illustrate, through simple examples, the hierarchical approach to modeling and verification

of an embedded system using MDGs. Chapter 5 gives a description of an embedded system

case study and the application of the hierarchical modeling and verification on the target

system. The model checking experiments performed on the target system are also reported,

along with a comparison study of the results obtained using MDG model checking with that

of SMV model checking. The conclusions and ideas on further work are presented in

Chapter 6.

13

Chapter 2

Multiway Decision Graphs

Multiway Decision Graphs (MDGs) have been proposed recently [23] to represent

circuits with datapath. The MDG tool combines the advantages of representing a circuit at

higher abstract levels as is possible in a theorem prover, and of the automation offered by

ROBDD based tools. MDGs, a new class of decision graphs, comprises, but is much

broader than the class of ROBDDs.

2.1 Multiway Decision Graphs

The formal system underlying MDGs is a subset of many-sorted first order logic,

augmented with a distinction betweenabstractand concretesorts. Concrete sorts have

enumerationswhile abstract sorts do not. The enumeration of a concrete sortα is a set of

distinct constants of sortα. The constants occurring in enumerations are referred to as

individual constants, and other constants asgeneric constantsand could be viewed as 0-ary

function symbols. The distinction between abstract and concrete sorts lead to a distinction

between three kinds of function symbols. Letf be a function symbol of typeα1 × α2 ×... ×

αn → αn+1. If αn+1 is an abstract sort, thenf is anabstract function symbol. If all the α1...

αn+1are concrete, thenf is aconcrete function symbol. If αn+1is concrete while at least one

of the α1... αn is abstract, thenf is referred to as across-operator. Concrete function

symbols must have explicit definition; they can be eliminated and do not appear in MDGs.

Abstract function symbols and cross-operators areuninterpreted.

14

An MDG is a finite, directed acyclic graph (DAG). An internal node of an MDG can be

a variable of concrete sort with its edge labels being the individual constants in the

enumeration of the sort; or it can be a variable of abstract sort and its edges are labeled by

abstract terms of the same sort; or it can be a cross-term (whose function symbol is a cross-

operator). An MDG may only have one leaf node denoted asT, which means all paths in

an MDG are true formulae. Thus, MDGs essentially represent relations rather than

functions. MDGs can also represent sets of states.

2.2 Modeling Hardware with MDGs

Using MDGs a data value can be represented by a single variable of abstract sort, rather

than by concrete Boolean variables. Variables of abstract sort are used to denote data

signals anduninterpreted function symbolsto denote data operations. Cross-operators (a

special case of uninterpreted functions) are useful for modeling feedback from datapath to

the control circuitry. They are thus much more compact than ROBDDs for designs

containing datapath, and sequential circuits can be verified independently of the width of

the datapath.

Figure 2.1: MDG for an OR gate

0 1

1

0

0 1

x
1

2

y

T

y

x
x1

x2

y

15

Fig. 2.1 shows an OR gate and its MDG representation, for a particular ordering of the

variables. Boolean MDGs are essentially the same as ROBDDs. In the MDG system,

abstract descriptions of state machines, calledAbstract State Machines(ASMs) [23] are

used to model the systems. ASMs are a new way of describing state machines. They admit

non-finite state machines as models in addition to their intended finite interpretations. An

ASM is obtained by letting some data input, state or output variables of a finite state

machine (FSM) be of abstract sort, and the datapath operations be uninterpreted function

symbols. Fig. 2.2 shows a tabular description of a simple ASM, with its MDG

representation, wherex is a Boolean input,a is an abstract state variable anda’ is its next

state variable. It performsinc operation whenx = 1, whereinc is an uninterpreted function

symbol.

Figure 2.2: MDG for a simple ASM

In analogy to ROBDDs, which are used to represent sets of states and transition/output

relations for FSMs, MDGs are used to compactly encode sets of (abstract) states and

transition/output relations for ASMs. Thus the implicit enumeration technique [55] is lifted

from the Boolean level to the abstract level, and refer to it asimplicit abstract enumeration

[22]. This makes it possible to verify a circuit at the register transfer (RT) level without

getting bogged down with the details of a gate level implementation. Thereby, the use of

0 1

inc(a)a

x

a’ a’

T

x

0

1

a

inc(a)

a’

16

ASMs raises the level of abstraction of automated verification methods to approach those

of interactive theorem proving methods, without sacrificing automation.

2.3 MDG-based Verification

Like ROBDDs, MDGs must bereducedand ordered. They obey a set of well-

formedness conditions, which turns MDGs into a canonical representation, which is used

by the combinational equivalence checking procedure of the MDG tools (Section 2.3.1).

This is, unfortunately, not of much use in thereachability analysisprocedure, because the

descriptions of the sets of states involves an implicit existential quantification over abstract

variables which removes the canonicity property.

Algorithms for computingdisjunction, relational product(conjunction followed by

existential quantification [23]),pruning-by-subsumtion(PbyS,for test of set inclusion [23])

andreachability analysis(using implicit abstract enumeration) have been implemented in

the MDG software package [14]. Except forPbyS, the operations are a generalization of

first-order terms of algorithms on ROBDD, with some restrictions on the appearance of

abstract variables in the arguments. Since in the underlying logic of MDG there is no

complement of expression involving equality over abstract terms,PbySapproximates the

relative complement between two formulasPandQ, by removing fromP those MDG paths

(conjuncts) that are subsumed by some paths inQ. Namely, ifR=PbyS(P, Q), then|=R ∨

(∃U) Q ⇔ P ∨ (∃U) Q [59].

In the reachability analysisprocedure, starting from the set of initial states, the set of

states reached in one transition is computed by the relational product operation. The

frontier set of states is obtained by removing the already visited states from the set of newly

17

reached states using the pruning-by-subsumtion (PbyS) operation. If the frontier set of

states is empty, then thereachability analysisprocedure terminates, since there are no more

unexplored states. Otherwise the newly reached states are merged (usingdisjunction) with

the already visited states and the procedure continues the next iteration, with the states in

the frontier set as the set of initial states.

In addition to the logic operations, a facility to carry out simple rewriting of terms that

appear in the MDGs is also included. This allows us to provide a partial interpretation to

(some) of the uninterpreted function symbols. For example, ifzero is an abstract generic

constant of sortwordnandeqz(x) a cross-operator of type [wordn→bool], then we could

provide a partial interpretation ofeqzusing the rewrite ruleeqz(zero)→1, indicating that

equal-to-zero is 1 when the argument iszero(but not revealing anything about the other

values). User selected rewrite rules are applied anytime a new term is formed during MDG

operations. In general, rewriting simplifies MDGs and helps remove false negatives during

safety property checking, thus likely avoiding non-termination of thereachability analysis

procedure for designs that depend on interpretation of operators for correct operation. A

detailed description of the operations and algorithms can be found in [59]; some possible

solutions to the non-termination problem are addressed in [14].

MDGs are used as the underlying representation for a set of hardware verification tools,

providing both validity checking and verification based on state-space exploration [23].

The MDG tools package the basic MDG operators and verification procedures. The

operators are disjunction, pruning-by-subsumption, and term-rewriting. The following are

the verification procedures provided in the MDG software package:

18

2.3.1 Combinational Verification

The combinational verification provides equivalence checking and safety property

checking of two combinational circuits. The MDGs representing the input-output relation

of each circuit are computed using the relational product of the MDGs of the components

of the circuits. Then, taking advantage of the canonicity of MDGs, it is verified whether the

two MDG graphs are isomorphic.

2.3.2 Safety Property Checking

A given safety property, a logic expression, is expressed as an invariant condition. An

invariant condition can be specified by a combinational circuit whose output signals are

named by the variables that occur in the condition. An MDG representing the invariant

condition is obtained from the MDG representing the functionality of the combinational

circuit by existentially quantifying the concrete inputs. The variables representing abstract

inputs are left in the graph as implicitly quantified secondary variables. The state space of

the given circuit (modeled as an ASM) is explored in each state using symbolicreachability

analysis. It is verified that the specified property is satisfied (i.e., it is invariant over the

reachable state space) by the given circuit.

2.3.3 Sequential Verification

Sequential verification provides equivalence checking of two component state

machines. The transition relation of the two ASMs is represented by an MDG, computed

by the relational product algorithm from the MDGs of the components, which are

themselves abstract machines. In other words, the relational product computes the

(synchronous) product machine of the component ASMs. The behavioral equivalence of

19

two sequential circuits, modeled as ASMs, is verified by checking whether the circuits

produce the same sequence of outputs for every sequence of inputs. This is achieved by

forming the product circuit consisting of the two circuits, feeding the same inputs to both

of them, and verifying an invariant asserting the equality of the corresponding outputs in

all reachable states.

2.3.4 Model Checking

Model checking feature has been recently developed [58] and incorporated into the

existing MDG system. This provides both safety and liveness property checking using the

implicit abstract enumeration of an ASM [57]. The properties are represented in a first-

order linear time temporal logic, calledLMDG. The ASM model of theLMDG formula is

constructed, along with a simplified invariant. The ASM of theLMDG is composed with the

original model and the simplified invariant is checked on the composite machine, using the

implicit abstract enumeration of an ASM [57].

2.3.5 Counterexample Generation

When invariant checking fails, the MDG tools generate a counterexample to help tracing

the source of the error. A counterexample consists of a list of assumptions, input and state

values in each clock cycle, which provides a trace leading from the initial state to the faulty

behavior. At present, the counterexample generation feature is not provided in the MDG

model checking algorithm.

The MDG system uses MDG-HDL [60] as the front-end description language, which

allows the use of abstract variables and uninterpreted function symbols. MDG-HDL

supports structural descriptions, behavioral ASM descriptions, or a mixture of structural

20

and behavioral descriptions. A structural description is usually a (hierarchical) network of

components (modules) connected by signals.

The MDG-HDL comes with a large library of predefined, commonly used, basic

components (such as logic gates, multiplexers, registers, bus drivers, ROMs, etc.) [60]. A

behavioral description is given by high-level constructs as ITE (If-Then-Else) formulas,

CASE formulas or tabular representations. The tabular constructor is similar to a truth table

but allows first-order terms in rows. The MDG-HDL description is then compiled into the

ASM model in internal MDG data structures [60]. The MDG tools run on a Prolog

platform. Interested readers are referred to [14, 23, 57, 58, 59, 60] for more details on the

MDG algorithms and tools.

21

Chapter 3

Hierarchical Modeling of Embedded Systems with

MDGs

3.1 Introduction

A specificationand animplementationare two descriptions of a system, be it hardware,

software, or both, where the specification is a more abstract view of an implementation. A

specification could be a behavioral description, which again could be complete or partial.

In the latter case, the specification would be a set of properties. In the MDG system, an

ASM can be used to describe a specification or an implementation. In our application, each

state in the ASM characterizes the contents of the microcontroller registers. The statements

of a specification or the instructions in an assembly code control the transition from one

state to another.

An embedded system comprises both the hardware and the embedded application

software. A hierarchical approach to modeling an embedded system is proposed at different

levels of the design hierarchy, thus enabling the verification to be applied at various stages

during the design process. The system is modeled in a hierarchical approach at four distinct

levels namely, the embedded system hardware architecture at the RT level, the Instruction

set architecture, the embedded software behavioral specification, and its assembly

language implementation.

22

3.2 Microcontroller RTL Architecture

A common general purpose microcontroller comprises the following basic components:

program memory, instruction register, instruction decoder, register file, ALU, working

register, a system bus, and a program counter. One of the prime advantage in using MDGs

is the ability to handle abstract descriptions. This avoids all the cumbersome procedure of

defining each bit of a register. Rather, a register can be viewed as an abstract variable. Thus,

an 8-bit general purpose register of the microcontroller can be modeled as a variable of

abstract sortworda8instead of a concrete sort with enumeration {0,...., 255}. A program

counter (say, 10-bit wide) can be modeled as a variable of abstract sortworda10. Another

advantage in using MDGs is the ability to represent uninterpreted functions. This enables

the program memory, register file, and the ALU to be viewed as black boxes. For instance,

the uninterpreted function symbolfetch is used to model the instruction fetch from the

program memory. A register file accesses are described in terms of functions likereadand

write, modeled as uninterpreted function symbols. The ALU functions are expressed using

uninterpreted function symbols e.g.,add, sub, inc, or etc. In MDG-HDL, the system bus

can be modeled using the basic componentdrivers.

3.3 Microcontroller IS Architecture

The instruction set of a microcontroller typically includes mathematical operations,

logical operations, transfer operations, control operations and no-operation. Using MDGs

the assembly instructions can be modeled as predicates. Predicates can be described using

the MDG-HDL basic library function,transform. The operations (e.g., mathematical,

logical) can be modeled using uninterpreted functions (e.g.,add, inc, or, move, goto),

23

applied to the arguments of the instructions (predicates). This is illustrated on the following

two instructions: the inclusive-OR instruction (OR R W) between a register (R) and a

working register (W), and the increment instruction (INCR W) of the working register (W).

Assembly Instruction: OR R W

MDG-HDL Model:

Definitions: var(W, worda8)

var(R, worda8)

function(or , inputs[worda8, worda8], output[worda8])

Instruction: transform(inputs([W, R]), function(or), output(W))

Assembly Instruction: INCR W

MDG-HDL Model:

Definitions: var(W, worda8)

function(inc , input[worda8], output[worda8])

Instruction: transform(inputs([W]), function(inc), output(W))

The instruction fetch is modeled using the uninterpreted function symbolfetch.

Decoding specific bits of an instruction can be modeled in a similar way, e.g., the

uninterpreted functionget_opcode models the decoding of the operation from the

instruction, andget_src_op and get_dest_op models the decoding of the source and

destination operands respectively from the instruction.

24

3.4 Embedded Software

The embedded software models are represented as ASMs. In MDG-HDL, an ASM is

described mainly in terms of a tabular representation. Each row in a table represents a

CASE statement. Each column consists of an input condition and the last column gives

either an output or a transition relation of a state variable. The default value for a CASE

statement can be shown in an optional row [60]. In the following, models for the behavior

of an example embedded software and its implementation in assembly language code,

using MDGs, are presented.

3.4.1 Embedded Software Behavior

One common way of describing the intended behavior is by using algorithmic

flowcharts. Hence, we consider the flowchart of the embedded software program as the

behavioral specification. An example flowchart, its ASM model and its description in

MDG-HDL is shown in Figure 3.1. The ASM model consists of three states, which are

labeled “S0” to “S2”. Each state implements one step in the flowchart. A step may consist

of many operations that could be done concurrently. In the MDG-HDL model the registers

R1andR2are of abstract sortworda8, andb1 of abstract sortwordc3. The model uses the

abstract functionsdecr, setbandresetbto decrement, set and clear a register respectively,

and the cross functiontestbitforzeroto test a particular bit of a register for zero condition.

They are defined with following types1:

decr: [worda8→ worda8]

setb: [worda8, worda3→ worda8]

1. The notationf: [α → β] implies that the functionf has argument of sortα and range of sort β.

25

resetb: [worda8, worda3→ worda8]

testbitforzero: [worda8, worda3→ bool]

Figure 3.1: An example flowchart and its ASM model

While, each step in the flowchart must be executed in succession, the MDG system

interprets its statements, written in MDG-HDL code, in parallel, unless otherwise stated.

Flowchart:

ASM model:

MDG-HDL model: initialize s = 0

case s = 0: R1 = decr(R1)
R2 = setb(R2,b2)
next(s) = 1

case s = 1: if testbitforzero(R1,b1) = 0
then next(s) = 2
else next(s) = 0

case s = 2: R2 = resetb(R2,b2)

No
Is R1.b1=0?

Yes

decr(R1)
setb(R2.b2)

resetb(R2.b2)

S0 S1 S2

R1.b1 = 1

R1.b1 = 0

26

An explicit clock S is defined in order to suppress the inherent parallelism of the MDG

system (see Figure 3.1).S is defined to be of concrete sortwordc2.

3.4.2 Embedded Software Implementation

Figure 3.2: An example assembly code fragment and its MDG model

The implementation considered here is the assembly language code programmed

(embedded) in a microcontroller. Figure 3.2 illustrates an example of assembly code

program, its ASM model, and its description in MDG-HDL. The assembly code

implementation is modeled as a set of instructions implementing the control behavior of a

Assembly code: 00 START DECR R1
01 SETB R2.b2
02 SKBZ R1.b1
03 GOTO START
04 RESETB R2.b2

Notations:
DECR Ri decrement and updates register Ri
SETB Ri.bj sets bit j of register Ri
SKBZ Ri.bj skip next instruction, if bit j of reg Ri is reset
GOTO L jump to the address indicated by the label L
RESETB Ri.bj resets bit j of register Ri

ASM model:

MDG-HDL model: initialize pc = 0

case pc = 0: next(pc) = 1
 R1 = decr(R1)

case pc = 1: next(pc) = 2
 R2 = setb(R2,b2)

case pc = 2: if testbitforzero(R1,b1) = 0
 then next(pc) = 4
 else next(pc) = 3

case pc = 3: next(pc) = 0
case pc = 4: R2 = resetb(R2,b2)

S0 S1 S2 S3 S4
R1.b1 = 1

R1.b1 = 0

27

routine. This is represented as an ASM, as shown by the state diagram in Figure 3.2. The

ASM model has five states. Labels “00” to “04” refer to the five states of the ASM. Each

state implements one instruction of the program. As is adopted in the behavior, this model

uses the same abstract functionsdecr to decrement a register, and abstract functionssetb

andresetbto set and clear a particular bit of a register respectively, and the cross function

testbitforzeroto test if the value of a particular bit of a register is zero. The abstract sort

worda8 is used to model the registersR1andR2, and the abstract sortworda3 is used to

model the bitsb1andb2. Here, thepc, of concrete sortwordc3, sequences the execution of

each instruction (see Figure 3.2).

28

Chapter 4

Hierarchical Verification of Embedded Systems

with MDGs

4.1 Introduction

The sequential equivalence checking, property checking and model checking

procedures of the MDG system are used to carry out our verification experiments.

Sequential equivalence checking between the specification (or behavior) and the

implementation is done to ensure that the implemented circuit or assembly code reflects its

intended behavior. In the MDG software package, sequential equivalence is ensured when

the outputs of the specification are the same as those of the implementation at every clock

cycle [60]. This is achieved by feeding the same inputs to the two circuits, thereby forming

aparallel combination of the circuits, which implements theproduct machine [23] [59].

Since a specification is an abstract behavior, it does not necessarily produce its outputs

during the same clock cycles as its implementation does. A sequential ASM behavior

would take lesser clock cycles than its implementation. Thus, we need a way to synchronize

both. We achieve this by introducing a variable,sync, which keeps track of the execution

of each instruction in the implementation (RTL hardware or the assembly code). This is

passed as an input to the specification (ISA or the flowchart behavior), wherein it delays

each of its output until its implementation is ready to produce the same output. This is done

in a simple way in MDG-HDL by adding a new input column in each of the output table

29

descriptions in the specification, under the namesync. Also, it is mandatory in the MDG

system that the specification and the implementation be required to use the same function

symbols while carrying out equivalence checking [60].

Property verification is used for verifying that a design satisfies some specific

requirements. Property verification in the MDG system can be achieved through invariant

checking [60] and model checking [57].

4.2 Hierarchical Verification Approach

A bottom-up approach is adopted to verify the embedded system model. First the

correctness of the microcontroller hardware (RT level) in implementing its instruction set

architecture is verified. Having ensured the fact that each of the instructions in the

instruction set is correctly executed in the hardware, it is then proceeded to verify the

embedded assembly program against its behavioral specification. This paves a way for

automatic verification of an embedded system hierarchically at different levels of

abstraction.

4.2.1 Verification of the ISA

The instruction set architecture of a microcontroller is the specification of the effect that

each instruction is intended to have on the visible state, which consists of the visible

registers and memory. To verify a microcontroller implementation against its instruction

set is to verify that the hardware execution of every instruction has the intended effect.

Let circuit M be the microcontroller architecture.M is compared with an ideal state

machineM’ , whose state is the visible state ofM and where each transition corresponds to

30

the execution of an instruction as specified by the architecture. The control FSM of a

conventional microcontroller has a distinguished ready state that is the starting point of

instruction execution, which is signalled by the starting of the fetch cycle. This ready state

is extracted fromM and is used as thesyncto achieve synchronization betweenM andM’ :

whenready= 1 the specified transition takes place inM’ , otherwiseM’ remains in the same

state. Using the sequential equivalence checking algorithm of the MDG package the

respective contents of the program counter, program memory, instruction register and the

general purpose registers between the RTL implementation (machineM) and the ISA

(machineM’) are compared at eachready state [59].

4.2.2 Verification of the Embedded Software

4.2.2.1 Equivalence Checking

Verification of the embedded software is done by comparing the value of the flags and

registers between the behavioral flowchart and the implemented assembly code program.

The behavioral specification consumes less clock cycles than the assembly program.

Hence, in the assembly implementation a variablesync is declared and is defined to be

equal to thepc. It is an output from the implementation and is taken as an input for the

specification. Below is shown the synchronized MDG model for the specification that is

amenable to sequential equivalence checking:

Synchronized MDG-HDL model for the specification:

case s = 0: when(sync = 0) R1 = decr(R1)

when(sync = 1) R2 = setb(R2,b2)

next(s) = 1

31

case s = 1: if testbitforzero(R1,b1) = 0

then next(s) = 2

else next(s) = 0

case s = 2: when(sync = 4) R2 = resetb(R2,b2)

Thus, the outputs are checked for equivalence at each cycle of the implementation.

4.2.2.2 Invariant Checking

Property checking is used for verifying that a design satisfies some specific

requirements. MDG tools allow checking of safety properties as invariants. Verification of

invariants is directly based on thereachability analysisprocedure of the MDG tools. Given

a state machineM and an invariantC, it is checked ifC holds in all reachable states ofM.

Following are two properties of the embedded software (Section 3.4.1), expressed as

invariants:

Property 1: if [¬ R1.b1] then [R2.b2=0]

Property 2: if [R1.b1] then [R2.b2=1]

Property 1 states that the flagR2.b2is reset, given the condition that bitb1 of register

R1 is reset. Property 2 states that the flagR2.b2is set, given the condition that bitb1 of

registerR1 is set.

Each of theif and thethenstatements is first transformed into aDirected Formula(DF)

[14]. A DF can be represented in terms of a circuit. Thus, a property is represented by its

equivalent circuit form. The two circuits corresponding to a property are composed and run

concurrently with the state machine on which the property is to be checked. The output of

the circuit corresponding to the condition (if) statement is compared with the output of the

32

circuit corresponding to thethenstatements. The equivalence between the two is checked

as an invariant.

4.2.2.3 Model Checking

Model checking is a technique to prove temporal properties on a design model under all

possible and allowable conditions. In MDG model checking, the properties are described

using a property specification language calledLMDG, which is a subset of a first-order

branching time temporal logic that supports abstract data representations. Both safety and

liveness properties can be expressed inLMDG, however, only universal path quantification

is possible.

Following are two properties of the embedded software (Section 3.4.1), expressed in

LMDG:

Property 1: AG((R1.b1=0) -> (X(R2.b2=0)))

Property 2: AG((R1.b1=1) -> (X(R2.b2=1))),

whereA is the universal path quantifier, andG, X are state quantifiers. (AG p) implies “For

all pathsp is true in all states”. (X q) implies “q is true in the succeeding state, from a given

state”.

Property 1 states that the flagR2.b2is reset in the succeeding state, given the condition

that bitb1of registerR1is reset in some state. Property 2 states that the flagR2.b2is set in

the succeeding state, given that bitb1 of registerR1 is set in some state.

The computation model is based on ASMs. To check a propertyp in LMDG on an ASM

M, first additional ASMsMj for basic sub-formulas ofp in which only the temporal

operatorx (next state) is allowed. These sub-formulas are calledNext_let_formulas. In

33

general, it takes two steps to check a property expressed inLMDG. The first step is to

automatically build additional ASMs that represent theNext_let_formulasappearing in the

property, and then connect these additional ASMs to the original ASM. The property parser

developed in C, with Yacc&Lex is used for this step. The second step is to check a simpler

property on the composite machine. The MDG Model checker developed in Prolog within

the MDG package is used for this step. Further details on the MDG model checking

procedure is found in [57].

34

Chapter 5

Case Study Application - PIC 16C71

The embedded system that is investigated in this work is the PIC16C71 microcontroller

[46], commercialized by Microchip Technology Inc., and its mouse controller application

software [45]. The hierarchical approach to modeling and verification is demonstrated on

this target system and the experimental results are presented.

5.1 The Target Embedded System

5.1.1 Hardware RT-level Architecture

The PIC16C71X family of microcontrollers fits perfectly in applications ranging from

security and remote sensors to appliance control and automotive. The EPROM technology

makes customization of application programs extremely fast and convenient. Low cost,

low power, high performance, ease of use and I/O flexibility make the PIC16C71X very

versatile even in areas where no microcontroller use has been considered before (e.g. timer

functions, serial communication, etc.).

The PIC16C71 is a low cost, high performance, 8-bit microcontroller, employing an

advanced RISC-like architecture (Figure 5.1). There are 36 8-bit wide general purpose

registers, 15 special function registers, a 13-bit wide program counter and a hardware stack.

The hardware stack is 8-level deep and has 36 bytes of RAM. The separate instruction and

data bus of the Harvard architecture allow a 14-bit wide instruction word with a separate 8-

35

bit wide data. An instruction cycle consists of eight Q cycles (Q1 to Q8). A fetch cycle

begins with the program counter (PC) incrementing in Q1. The instruction is fetched from

the program memory and latched into the instruction register in Q5. This instruction is then

decoded and executed during the Q6, Q7, and Q8 cycles. Data memory is read during Q6

(operand read) and written during Q8 (destination write). All instructions execute in a

single instruction cycle except for program branches.

Figure 5.1: Microcontroller architecture (RT-level)

5.1.2 Instruction Set Architecture

The instruction set architecture (ISA) (Appendix A) consists of a total of 35 instructions

(reduced instruction set). The instruction set is highly orthogonal, that makes it possible to

EPROM

Memory
Program

Registers
File

RAM

Addr MUX

Program Counter

(13-bit)

8 Level Stack

Instruction reg

FSR reg

STATUS reg

W reg

MUX

ALU

Instruction
Decode &
Control

Indirect
Addr

Program
Bus

13

Direct Addr 7

14

PORT B

PORT A

8

8

Data Bus 8

9RAM Addr

...

36

carry out any operation on any register using any addressing mode. The instruction set is

categorized into four general formats of operations (Figure 5.2):

• byte-oriented (instructions acting on two registers)

• literal (instructions acting on the working register,w)

• bit-oriented (instructions acting on one bit of a register)

• control (instructions acting on the program counter,pc)

Each instruction is 14-bit wide and is divided into an OPCODE, which specifies the

instruction type and one or more OPERANDS, which further specify the operation of the

instruction. For byte-oriented instructions,f represents a file register designator andd

represents a destination designator. The file register designator specifies which file register

is to be used by the instruction. The destination designator specifies where the result of the

operation is to be placed. Ifd is zero the result is placed in thew register and if it is one the

result is placed in thef register specified in the instruction. For bit-oriented instructions,b

represents a bit field designator which selects the number of the bit of thef register to be

used by the instruction. For literal operations,k represents an 8-bit immediate value. For

control operationsk represents a 11-bit address.

5.1.3 Mouse Controller Software

The mouse is becoming increasingly popular as a standard pointing data entry device.

Various kinds of mice can be found on the market, such as optical mice, opto-mechanical

mice or trackball mice. Their basic mechanisms are very similar. The major electrical

components of a mouse are: Microcontroller, Photo-transistors, Infrared emitting diodes,

and Voltage conversion circuit. The mouse can be divided into several functional blocks

37

(Figure 5.3): Control, Button detection, Motion detection, Interface signal generation

(typically, RS-232), and DC power supply. The intelligence of the mouse is provided by

the microcontroller, therefore the features and performance of a mouse is greatly related to

the microcontroller and the embedded program used to implement the function.

Figure 5.2: General format for instructions in ISA

OPCODE

1013 9 67 0

b (Bit #)

13 8 7 0

OPCODE

OPCODE

13 10 011

f (FILE #)

k (literal)

k (literal)

813 7 6 0

d f (FILE #)OPCODE

Byte-oriented file register operations

Bit-oriented file register operations

Literal and Control operations

CALL and GOTO instructions

d = 0 for destination W

d = 1 for destination f

38

In the following, the implementation of a serial mouse using the PIC16C71 [46, 45] is

described. The major tasks performed by the embedded software are: Button scanning, X

and Y motion scanning, and formatting and sending data to the host. To achieve the above

mentioned goals the software is composed of three parts:

• Main program (Appendix B, Figure 1)

• SubroutineByte (Appendix B, Figure 2)

• SubroutineBit (Appendix B, Figure 3)

Figure 5.3: Functional blocks of a serial mouse

TheMain program detects any changes in the button status and in the movement counts

and sets aTrigger flag. TheMain program calls two subroutines:ByteandBit. TheMain

calls theByte five times to send five bytes of data. The Byte calls the subroutineBit

periodically. TheByteconverts the parallel data formatted in theBit into a serial data on

the “Received Data” (RD) pin and controls the status ofRD. If Trigger flagis clearRDwill

always be high and no message will be sent even whenByteis called. TheBit counts the

number of pulses from the outputs of the photo detectors and determines the direction of

movement.

+5V DC-10V DC
20

2

of
RS-232 Port

Host

Power Conversion
Circuit

Pushbuttons

Microcontroller

Quadrature Encoders

39

The routineBit has two subroutinesBitx andBity. The subroutineBitx tracks the right

and left movement of the mouse andBity tracks the up and down movement. A right

movement is detected whenXData(XD) is zero during a positive edge of theXClock(XC)

or whenXD is one during a negative edge ofXC. TheBit1 section ofBitx detects the former

condition for a right movement (XD being zero during a positive edge ofXC). A Right Flag

being set indicates a movement to the right, and theXCountgives the extent of the right

movement. The sectionBit0 detects the latter condition for a right movement (XD being

one during a negative edge ofXC). Similarly, an up movement is detected whenYData

(YD) is zero during a positive edge of theYClock(YC) or whenYD is one during a negative

edge ofYC. The Bit0 and Bit1 sections ofBity detects the two conditions for an up

movement respectively and accordingly set anUp Flag.

5.2 Hierarchical Modeling of the Target System

5.2.1 RTL Architecture

The RTL netlist implementation of the microcontroller (Figure 5.1) is described using

MDG-HDL. A hierarchical description down to the MDG-HDL library of basic

components (see Chapter 2) is adopted. The 8-bit general purpose registers are modeled as

variables of abstract sortworda8. The register file is described in terms of uninterpreted

access functionsreadandwrite, with the particular register to be accessed being supplied

as an argument to the functions. The uninterpreted function symbolfetchis used to model

the instruction fetch from the program memory. The ALU functions are expressed using

uninterpreted function symbolsincreg, decreg, iorreg, setbit, clearbit, testbit, etc. The

system bus is modeled using the basic componentdriver. The 13-bit program counter is

40

modeled as a variable of abstract sortworda13. The Q cycles of an instruction are modeled

using a variable of concrete sortwordc4, with enumeration {0,...., 15}, which can

accommodate the 8 cycles.

5.2.2 Instruction Set Architecture

The instructions in the instruction set of PIC 16C71 microcontroller (Appendix A) are

modeled as predicates using MDGs. The operations in the instructions are modeled using

uninterpreted functions, applied to the arguments of the instructions (predicates) as

follows: byte oriented operations asincreg, decreg, iorreg, movreg, clearreg, etc., bit

oriented operations assetbit, clearbit, testbit, etc., literal operations asaddlitw, andlitw,

iorlitw , etc., and control operations ascall, goto, return, etc. The instruction fetch is

modeled using the uninterpreted functionfetch. Decoding the operation, source and the

destination operands from the instruction are modeled using the uninterpreted functions

decode_opcode, decode_src_op, anddecode_destn_op respectively.

The model is illustrated below using the following two instructions: the instruction that

sets a particular bit (b) of a register (R) (BSF R b) [46], and the unconditional branch

instruction (GOTO K) [46]:

Assembly Instruction: BSF R b

MDG-HDL Model:

Definitions: var(R, worda8)

var(b, worda3)

function(setbit , inputs[worda8, worda3], output[worda8])

Instruction: transform(inputs([R, b]), function(setbit), output(R))

41

Assembly Instruction: GOTO K

MDG-HDL Model:

Definitions: var(K, worda11)

var(pc, worda13)

function(goto , input[worda11], output[worda13])

Instruction: transform(inputs([K]), function(goto), output(pc))

5.2.3 Embedded Software Specification

The specification for the routineMain and the two subroutinesByteandBit are derived

from their respective algorithmic flowcharts (Appendix B, Figures 1, 2, 3). They are

modeled as ASMs, given mainly by tabular representation of the transition and output

relations.

The state diagrams of the specification of theMain, ByteandBit routines (Appendix B,

Figures 4, 5, 6) consists of 13, 11, and 17 states, respectively. The model uses the abstract

sort worda8 for representing the registers,BSTAT, Counter, XCount, YCount, Data, and

RB. Concrete sortwordc3is used to address a particular bit in a register. The concrete sort

bool is used to specify (the value of) a particular bit of a register, viz.,XClock, YClock,

XData, YData, RD, Triggerflag, RightflagandUpflag. The uninterpreted abstract functions

bitset[worda8× worda3→ worda8] andbitclear [worda8× worda3→ worda8] are used

to set and reset a specific bit of a register respectively. A cross functionisregzero[worda8

→ bool] is used to test whether or not the contents of a register is reset. Similarly the cross

function isbitzero[worda8× worda3→ bool] is used to test if a particular bit of a register

42

is reset. The concrete sortwordc4is used to represent the values of the clockS in routines

Main and Byte, andwordc5is used to represent the values ofS in the routineBit.

5.2.4 Embedded Software Implementation

The specification of the routineMain and the two subroutinesByte and Bit are

implemented using the assembly language of PIC 16C71. The assembly implementation is

modeled as a set of instructions implementing the control behavior of the routines. They

are modeled as ASMs, given mainly by tabular representation of the transition and output

relations. The MDG ASM model consists of as many states as there are instructions, each

for implementing one instruction at a time. Thus the enumeration ofpc is equal to the

number of instructions in the routine. Since the model is too large to include here, the model

of theBit1 section of theBit routine is shown in Fig. 5.4. Furthermore, the model uses the

same constants, and abstract and cross functions as in the specification model, which is

mandatory for equivalence checking using MDG tools.

5.3 Hierarchical Verification of the Target System

In this section, the bottomup approach for the hierarchical verification of the target

embedded system model is described, using the MDG tools. This section also shows how

the model is validated using the MDG tools. The experiments were conducted on a SUN

SPARC ULTRA 1 with 256 MB of main memory. The results are summarized in tables,

showing the performance statistics of the verifications, including CPU time, memory usage

and number of MDG nodes generated. The CPU time is the time used for compiling the

43

circuit descriptions and forreachability analysis, including counterexample generation, if

necessary.

Figure 5.4: ASM and MDG model ofBit1 of Bitx routine implementation

Assembly language program:

01: BTFSS RA.b2
02: GOTO BIT0
03: BTFSC CSTAT.b2
04: GOTO BITY
05: INCF XCOUNT
06: BCF FLAGB.b3
07: BTFSS RA.b3
08: GOTO BITY
09: BSF FLAGB.b3
10: GOTO BITY

Notations:
BCF Ri.bj : clear bit j of register Ri
BSF Ri.bj : set bit j of register Ri

ASM model:

MDG-HDL model: initialize pc = 0
case pc = 1 : if (RA.b2 = 0) then next(pc) = 2

else next(pc) = 3
case pc = 2 : goto(BIT0)
case pc = 3 : if (CSTAT.b2 = 1) then next(pc) = 4

else next(pc) = 5
case pc = 4 : goto(BITY)
case pc = 5 : inc(XCOUNT)

next(pc) = 6
case pc = 6 : reset(FLAGB.b3)

next(pc) = 7
case pc = 7 : if (RA.b3 = 0)then next(pc) = 8

else next(pc) = 9
case pc = 8 : goto(BITY)
case pc = 9 : set(FLAGB.b3)

next(pc) = 10
case pc = 10: goto(BITY)

RA.b2 = 1

S1
RA.b2 = 0

S2

CSTAT.b2 = 0

CSTAT.b2 = 1

S3 S4 S5 S9 S10S8

RA.b3 = 1

RA.b3 = 0
S7S6

To BIT0

To BIT0 To BIT0

44

5.0.1 Verification of the ISA

The contents of the program counter, program memory, instruction register, working

register, and the general purpose registers in the RTL architecture model are compared to

the respective in the instruction set model at every cycle Q = 1, which is the ready state of

the target microcontroller. The above mentioned comparison is demonstrated using the

MDG equivalence checking procedure.

The following are the instructions that are used in the mouse controller program: INCF,

BSF, BCF, BTFSS, DECFSZ, BTFSC, GOTO, CALL and RETLW, which span all the

four categories of operation in the instruction set. The hardware of the target

microcontroller is verified to be implementing the above mentioned instructions in its

instruction set. The performance statistics of the verification are given in Table 5.1.

5.0.2 Equivalence Verification of the Embedded Software

A hierarchical approach is followed for the verification of the mouse controller

embedded software program. To start with, the subroutinesBitx andBity of the routineBit

are verified. The verified subroutines are then abstracted away and replaced by their

respective specifications, which have less states than their respective implementations,

shown in Figure 5.5. The routinesBit, ByteandMain are verified hierarchically in this

manner, using the MDG equivalence checking procedure. This approach effectively

reduces the state space of the product machine and hence the verification CPU time.

Verification
Result of

Verification
CPU time
(seconds)

Memory
usage (MB)

No. of
MDG Nodes

RTL against ISA successful 14.27 9.15 21940

Table 5.1: Performance statistics of microcontroller hardware verification

45

Further simplification is possible if the state of the calling routine, after the return from

the called routine, does not depend on the outputs of the called routine. In other words, if

the state of the calling routine is not changed by the called routine, then each of the routines

could be verified separately and independently of each other. In instances where this

simplification could be applied, it tremendously reduces the state space, and the models

become completely modular. Interested readers are referred to Appendix C for a formal

proof of the approach.

Futhermore, the routineBit is called eight times in the routineByte, and the routineByte

is called five times in routineMain. Once a routine is verified, it is redundant to verify every

time it is being called by another routine, since the verification implicitly checks the outputs

of a routine for all combinations of its inputs in all reachable states of the routine.

Figure 5.5: Hierarchical Verification Approach

Using the hierarchical approach, the equivalence between the behavioral specification

and the embedded assembly software of the Main, Byte and the Bit routines are verified.

SPEC.

IMPL.

SPEC.

IMPL.

BYTE / BIT / BITX

Outer Subroutine

Inner Subroutine

MAIN / BYTE / BIT

46

The equivalence checking ofBit0 of the routineBit showed an error in the assembly

language code. This was indicated by a counterexample generated by the MDG tools,

providing a trace leading to the software error. The error was found to be located in the

instruction 6 (Figure 5.4), the instruction 6 is to be BTFSC in place of BTFSS. This result

confirms with the one obtained in [54] using SMV. The erroneous instruction is corrected

in no time and the equivalence checking is run successfully on the subroutineBit0. The rest

of the routines are verified successfully. Table 5.2 shows the performance statistics of the

equivalence verification (behavioral specification against assembly code implementation)

of each of the routines.

5.3.3 Invariant Checking of the Embedded Software

Properties are derived to test the status of the flags, in accordance with the primary

inputs, from the embedded software specification (Section 5.2.3). Below is shown two

properties of theRightFlag, expressed as invariants:

Property 1: if [RA.b2] ∧ [¬ CSTAT.b2] then [¬ Rightflag]

Verification of
Result of

Verification
CPU time
(seconds)

Counterex.
gen. (seconds)

Memory
usage (MB)

No. of
MDG Nodes

BIT0 of BITX successful 0.12 - 1.33 783

BIT1of BITX (org) failed 0.18 0.43 1.30 918

BIT1of BITX (corr) successful 0.11 - 2.05 783

BITX successful 0.10 - 7.57 357

BIT0 of BITY successful 0.21 - 1.33 783

BIT1 of BITY successful 0.17 - 1.66 783

BITY successful 0.07 - 7.57 357

BIT successful 1.00 - 2.56 3624

BYTE successful 21.8 - 1.04 26345

MAIN successful 25.67 - 6.11 38167

Table 5.2: Performance statistics of embedded software Verification

47

Property 2: if [RA.b2] ∧ [¬ CSTAT.b2] ∧ [RA.b2] then

[Rightflag]

Figure 5.6: State machine corresponding to inputs RA.b2 = 1, CSTAT.b2 = 0

Property 1 checks whether theRight Flag is reset, when the inputsRA.b2= 1 and

CSTAT.b2= 0. The environment state diagram for Property 1 is shown in Fig. 5.6. The state

machine in Fig. 5.6 is an instance of the state machine in Fig. 5.4, given the environment

thatRA.b2= 1 andCSTAT.b2= 0. Property 2 checks whether theRight Flagis set, when

inputsRA.b2= 1, CSTAT.b2= 0 andXDATA= 0. Property 2 is similar to the CTL property

verified in [54].

The properties stated above of theRight Flagare checked on the flowchart specification

as well as the embedded assembly language implementation of the routineBit, using

invariant checking procedure of the MDG tools. The Property 1 succeeded on the

specification and the implementation state machines. Property 2 failed to succeed on the

implementation machine. The MDG tool generated a counterexample during the invariant

checking, which confirmed with the error located by the equivalence checking in Section

5.0.2. The instruction 6 was corrected and the property 2 was checked to hold good on the

corrected implementation machine. Table 5.3 shows the performance statistics for the

invariant checking.

CSTAT.b2 = 0

RA.b2 = 1

S1 S3 S5 S6 S7

48

5.3.4 Model Checking of the Embedded Software

Model checking experiments were conducted to test the temporal properties of the

embedded software, using the MDG model checking procedure. Furthermore, the model

checking experiment given in [54] was re-verified using a recent version of the SMV tool,

running on a faster machine [47]. This experiment was conducted to have a comparison

with the MDG model checking experiments in terms of time and complexity. The

experiments were performed on SUN SPARC ULTRA 1 with 256 MB of main memory.

5.3.4.1 Model Checking using MDG Tools

Temporal properties of the embedded software are derived from the embedded software

specification (Section 5.2.3). Two of the properties that tests the status of theRightflag,

expressed inLMDG are as follows:

Property 1: AG((RA.b2=0 & CSTAT.b2=1) -> (X(Rightflag =0)))

Property 2: AG((RA.b2=0 & CSTAT.b2=1 & XDATA=1) -> (X(Rightflag =1)))

Property 1 checks whether theRight Flagis reset in the succeeding state, after the inputs

RA.b2= 1 andCSTAT.b2= 0 are assigned. Property 2 checks whether theRight Flagis set

Property
Verification

on BIT
Result of

Verification
CPU time
(seconds)

Counterex.
gen. (seconds)

Memory
usage (MB)

No. of
MDG Nodes

property 1 org. impl successful 1.37 N/A 1.08 592

property 1 cor. impl successful 1.34 N/A 1.06 567

property 1 spec successful 1.31 N/A 1.06 567

property 2 org. impl failed 1.44 0.10 1.10 711

property 2 cor. impl successful 1.37 N/A 1.08 613

property 2 spec successful 1.46 N/A 1.07 588

Table 5.3: Performance statistics of invariant checking onBit

49

in the succeeding state, after inputsRA.b2= 1, CSTAT.b2= 0 andXDATA= 0 are assigned.

Property 2 is similar to the CTL property verified in [54].

The model checking experiments are performed on the specification and the

implementation models of the subroutineBit1 of Bitx, to verify if the models confirm to the

above mentioned properties. The model checking of Property 2 on the implementation

model of the subroutine indicated a failure. The error was traced manually to be found in

instruction 6, and was corrected. The experiment was repeated successfully on the

corrected model of the subroutine, which confirmed with that shown in Section 5.0.2. Table

5.4 summarizes the performance statistics of the model checking experiments using MDG

model checking.

5.3.4.2 Comparison with Model Checking using Cadence SMV

Cadence SMV [43] has been found to be quite effective in automatically verifying

properties of combinational logic and interacting finite state machines. It is a formal

verification system based on symbolic model checking [11]. It uses a Verilog hardware

description language to express the system model. The model is described in the boolean

level. The specification is expressed as CTL formulas. SMV uses the OBDD symbolic

Property
Verification on

Bit1 of Bitx
Result of

Verification
CPU time
(seconds)

Memoryusage
(MB)

No. of
MDG Nodes

property 1 org. impl successful 0.160 1.48 1172

property 1 cor. impl successful 0.170 1.41 1175

property 1 spec successful 0.060 0.94 628

property 2 org. impl failed 0.250 1.51 1323

property 2 cor. impl successful 0.182 2.35 1250

property 2 spec successful 0.130 0.98 613

Table 5.4: Performance statistics of MDG model checking

50

model checking algorithm to verify each of the CTL formulas on the Verilog model. SMV

also has a counterexample generation feature.

Temporal properties of the embedded software are derived from the embedded software

specification (Section 5.2.3). Two of the properties that tests the status of theRightflag,

expressed in CTL are as follows:

Property 1: AG((RA.b2=0 & CSTAT.b2=1) -> F (Rightflag =0))

Property 2: AG((RA.b2=0 & CSTAT.b2=1 & XDATA=1) -> F (Rightflag =1)),

whereA is the universal path quantifier, andG, F are state quantifiers. (AG p) implies “For

all pathsp is true in all states”. (F q) implies “q is true for one state in the future, from a given

state”. Property 1 checks whether theRight Flagis reset in one state in the future, after the

inputsRA.b2= 1 andCSTAT.b2= 0 are assigned. Property 2 checks whether theRight Flag

is set in one state in the future, after inputsRA.b2= 1, CSTAT.b2= 0 andXDATA= 0 are

assigned. Property 2 is similar to the CTL property verified in [54].

The model checking experiments are performed on the implementation model of the

subroutineBit1 of Bitx, to verify if the model confirms to the above mentioned properties.

The model checking of Property 2 on the implementation model of the subroutine indicated

a failure. The counterexample trace indicated an error found in instruction 6. The error was

subsequently corrected and the experiment was repeated successfully on the corrected model

of the subroutine, which confirmed with that shown in Section 5.0.2. Table 5.5 summarizes

the performance statistics of the model checking experiments using SMV model checking.

BDD-based symbolic model checking requires the design to be described at the boolean

logic level, the state explosion caused by large datapath is often the bottleneck in applying

51

symbolic model checking techniques. The MDG model checking raises the level of

abstraction, in which the model is described using ASMs, which are encoded using MDGs.

The verification of ASMs is based on state enumeration, the complexity of which is

independent of the width of the datapath.

Comparing the results obtained in Table 5.5 with that in Table 5.4, a remarkable

reduction in the size of the graphs and the CPU time is obtained with using MDGs.

Furthermore, Thiry and Claesen [54] report the verification of Property 2 on theBit routine,

run on a 486DX33 machine with 16 MB RAM. The verification time reported was 23

seconds. Table 5.2 shows the equivalence verification of theBit routine consumed only 1

second of CPU time. This demonstrates the ease and effectiveness in using MDG tools.

Property
Verification on

Bit1 of Bitx
Result of

Verification
CPU time
(seconds)

No. of Nodes

property 1 org. model successful 2.67 65721

property 1 cor. model successful 2.66 65692

property 2 org. model failed 4.79 77662

property 2 cor. model successful 2.84 62821

Table 5.5: Performance statistics of SMV model checking

52

Chapter 6

Conclusions

While formal verification is an improvement over testing, it is only as good as the

specification used and the soundness of the proof. Also, the description of the target

systems, be it hardware or software, are only abstractions of the actual physical systems,

and are thus subject to error or over-simplification. While correctness cannot be

guaranteed, formal verification will nonetheless result in more reliable systems, reduced

maintenance, and better quality control. Formal verification allows for objective,

systematic review, because the formal descriptions, and the proof trace provide a

permanent record of why the designer thinks the system is correct.

Embedded systems are gaining widespread applications by the fact that they allow for

more flexibility and reconfigurability (the degree of which depends on the degree of the

partition) and reduced design cycle time. This work attempts to emphasize the imperative

need for verifying the reliability of such a system. It presents a hierarchical approach to

model and verify an embedded system at different levels of design abstraction, using the

MDG tools. The approach is demonstrated on a commercial microcontroller used in a

mouse controller application. Models are established for the RT level hardware and the

Instruction Set Architecture of the microcontroller, and the behavioral specification and its

implementation as the assembly code of the embedded mouse controller application

software, are presented using MDGs. Experiments are conducted using the equivalence

checking, property checking and the model checking features provided by the MDG tools,

53

to verify the correctness of the hardware in implementing its ISA, and the correctness of

the embedded software in implementing its specification. The verification experiments

conducted on our models using the MDG tools concluded in few seconds of CPU time.

There are two essential differences between the approach proposed in this thesis and that

presented in [54]. In [54] the authors present a single model that simulates the execution of

the instructions in the embedded software on the RTL hardware, and verify a property on

this single model. The proposed hierarchical approach splits the system into four models,

each abstracted at different levels of the design hierarchy. This, in turn, splits the

verification task into two separate verification experiments, thus rendering the verification

approach less redundant, more modular, and easier debugging in case of errors. Moreover,

the single model in [54] is represented at the boolean level, using ROBDDs, while the

models presented in this thesis are elevated to higher levels of abstraction and represented

using MDGs. From the experimental point of view, [54] demonstrates the approach on a

single routine of an embedded software program. This thesis demonstrates the approach on

a complete embedded system. The relatively small CPU time and memory consumption

achieved in all the experiments demonstrate the efficiency of the use of abstract data types

and uninterpreted functions, as provided by MDGs, to handle the inherent complexities of

verifying a complete embedded system, in an automated environment.

At the same time, abstraction might lead to possible non-termination of state-

exploration. Generalization of the initial states, in certain cases, counteracts this problem.

A limitation from the application software point of view is that, an increase in the number

of conditional branches increases the chances of state explosion. Since thepcof a software

program has to be of concrete sort and can never be made abstract, this thesis shows two

54

ways to reduce the state space per verification: one is to verify each of the routines in a

program separately, under certain conditions as stated in Section 5.0.2, and the other more

generic way is to replace the implementation of the verified routines with their respective

specifications in the calling routine. This shows that the MDG tool is more adapted to

hardware verification, and need some improvement to handle the enormity of the states that

could be found in a software program.

Representing our models in standard hardware description languages, namely VHDL,

which has been recently interfaced to the MDG tools, would further enhance the

applicability of the MDG tools for the verification of embedded systems and integrating it

into the hierarchical design process. This will also eliminate possible human errors during

hand translation of the design model into MDG-HDL model.

55

Bibliography

[1] S. Balakrishnan, S. Tahar. Modeling and Formal Verification of a Commercial

Microcontroller for Embedded System Applications. Proc. IEEE 10th International

Conference on Microelectronics (ICM’98), Monastir, Tunisia, December 1998, pp.

107-110.

[2] S. Balakrishnan, S. Tahar. A Hierarchical Approach to the Formal Verification of

Embedded Systems Using MDGs. Proc. IEEE 9th Great Lakes Symposium on VLSI

(GLS-VLSI'99), Ann Arbor, Michigan, USA, March 1999, IEEE Computer Society

Press, pp. 284-287.

[3] H. Barringer. Symbolic Verification of Hardware Systems. Proc. of IFIP Conference

on Hardware Description Languages and their Applications (CHDL’95), Shiba, Ja-

pan, August 1995.

[4] H. E. Berg, W. E. Boebert, W. R. Franta, T. G. Moher. Formal Methods of Program

Verification and Specification, Prentice-Hall Inc., 1982.

[5] R. S. Boyer, J. S. Moore. A Computational Logic Handbook. Academic Press, Boston,

1988.

[6] R. K. Braytonet.al. VIS: A System for Verification and Synthesis. Technical Report

UCB/ERL M95, Electronics Research Laboratory, University of Berkeley, Decem-

ber 1995.

56

[7] B. C. Brock, W. A. Hunt, Jr.. Formally Specifying and Mechanically Verifying Pro-

grams for the Motorola Complex Arithmetic Processor DSP. Proc. IEEE Internation-

al Conference on Computer Design (ICCD’97), Austin, October 1997, pp. 31-36.

[8] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, Vol. C-35, No. 8, August 1986, pp. 677-691.

[9] R. E. Bryant, Y. Chen. Verification of Arithmetic Circuits with Binary Moment Dia-

grams. Proc. 32nd ACM/IEEE Design Automation Conference (DAC’95), San Fran-

cisco, June 1995.

[10] K. Buchenrieder, A. Sedlmeier, C. Vieth. HW/SW Co-Design with PRAM’s using

CODES. Proc. Computer Hardware Description Languages and their Applications

(CHDL’93), Elsevier Science Publishers B. V., 1993, pp. 65-78.

[11] J. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill. Sequential Circuit Verification

using Symbolic Model Checking. Proc. 27th ACM/IEEE Design Automation Confer-

ence, IEEE Computer Society Press, Los Alamitos, June 1990, pp. 46-51.

[12] J. Burch, D. Dill. Automatic Verification of Pipelined Microprocessor Control, Com-

puter Aided Verification, LNCS 818, Springer Verlag, 1994, pp. 68-80.

[13] R. Butler, G. Finelli. The Infeasibility of Experimental Quantification of Life-Critical

Software Reliability. Software Engineering Notes, Vol. 16, No. 5, December 1991,

pp. 66-76

[14] E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, Z. Zhou. Automated Verifica-

tion with Abstract State Machines Using Multiway Decision Graphs. Formal Hard-

ware Verification. Methods and Systems in Comparison, LNCS 1287, State-of-the-

Art Survey, Springer Verlag, 1997, pp. 79-113.

57

[15] E. M. Clarkeet.al. Spectral Transformations for Large Boolean Functions with Ap-

plication to Technology Mapping. 30th ACM/IEEE Design Automation Conference,

Dallas, June 1993.

[16] E. Clarke, M. Fujita, X. Zhao. Hybrid Decision Diagrams. Proc. IEEE International

Conference on Computer-Aided Design (ICCD’95), San Jose, California, Dallas,

June 1995.

[17] B. Cohen, W. T. Harwood, M. I. Jackson. The Specification of Complex Systems. Ad-

dison-Wesley Publishing Company, 1986.

[18] A. Cohn, A Proof of Correctness of the Viper Microprocessor: The First Level, VLSI

Specification, Verification and Synthesis, Kluwer Academic Publishers, Boston,

1988, pp. 27-71.

[19] A. Cohn, Correctness Properties of the Viper Block Models: The Second Level. Cur-

rents Trends in Hardware Verification and Automated Theorem Proving, Springer-

Verlag, 1989, pp. 1-91.

[20] A. Cohn, The Notion of Proof in Hardware Verification, Journal of Automated Rea-

soning, Vol. 5, May 1989, pp. 127-139.

[21] J. Cook. Verification of the C/30 Microcode using the State Delta Verification System

(SDVS). Proc. 13th National Bureau of Standards, National Computer Sceurity Cen-

tre, October 1990, pp. 20-31.

[22] F. Corella, M. Langevin, E. Cerny, Z. Zhou, X. Song. State Enumeration with Ab-

stract Descriptions of State Machines. Proc. of IFIP WG 10.5 Advanced Research

Working Conference on Correct Hardware Design and Verification Methods

(CHARME’95), October 1995, Frankfurt, Germany.

58

[23] F. Corella, Z. Zhou, X. Song, M. Langevin, E. Cerny. Multiway Decision Graphs for

Automated Hardware Verification. Formal Methods in System Design, Vol. 10, No.

1, 1997, pp. 7-46.

[24] D. Cyrluk, P. Narendran. Ground Temporal Logic: A Logic for Hardware Verifica-

tion. Proc. Workshop on Computer-Aided Verification, 1994.

[25] R. Drechsler, B. Becker, S. Ruppertz. K*BMDs: A new Data Structure for Verifica-

tion. Proc. IFIP WG 10.5 Advanced Research Working Conference on Correct Hard-

ware Design and Verification Methods (CHARME’95), Frankfurt, October 1995.

[26] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Sci-

ence, Elsevier Science Publishers B. V., 1990, Chapter 16.

[27] R. J. Foulger. Programming Embedded Microprocessors: A High-level Language So-

lution. NCC Publications, Manchester, England, 1982.

[28] D. Gajski, et al. A System-design Methodology: Executable Specification Refine-

ment. Proc. EDAC-94, Paris, 1994.

[29] D. Galter. Symbolic Verification of Instruction-Set Processors. Master of Mathemat-

ics Thesis, Dept. of Computer Science, University of Waterloo, 1994.

[30] A. Ghosh, S. Devadas, A. R. Newton. Sequential Logic Testing and Verification. Klu-

wer Academic Publishers, 1992.

[31] M. Gordon. LCF_LSM, Technical Report No. 41, Computer Laboratory, Cambridge

University, 1983.

[32] M. J. C. Gordon. Proving a Computer Correct using the LCF_LSM Hardware Verifi-

cation System, Technical Report No. 42, Computer Laboratory, Cambridge Univer-

sity, 1983.

59

[33] M. J. C. Gordon, T. F. Melham. Introduction to HOL: A Theorem Proving Environ-

ment for Higher-Order Logic. Cambridge University Press, Cambridge, U. K., 1993.

[34] A. Gupta. Formal Hardware Verification Methods: A Survey. Journal of Formal

Methods in System Design, Kluwer Academic Publishers, Vol. 1, No. 2/3, 1992, pp.

151-238.

[35] W. A. Hunt. FM8501: A Verified Microprocessor. PhD Thesis, University of Texas,

Austin, 1985.

[36] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, 1986.

[37] R. B. Jones, D. L. Dill. Efficient Validity Checking for Processor Verification. Proc.

IEEE International Conference on Computer-Aided Design (ICCAD’95), San Jose,

November 1995.

[38] J. J. Joyce. Multi-level Verification of Microprocessor-based Systems. Technical Re-

port 195, Computer Laboratory, University of Cambridge, May 1990.

[39] M. Kaufmann, J. S. Moore. ACL2: An Industrial Strength of Nqthm. Proc. 11th An-

nual Conference on Computer Assurance (COMPASS’96), IEEE Computer Society

Press, June 1996, pp. 23-34.

[40] A.Kundig, R. E. Buhrer, J. Dahler. Embedded Systems - New Approaches to their

Formal Description and Design - An Advanced Course. Lecture Notes in Computer

Science, Springer Verlag, Switzerland, No. 284, 1986.

[41] M. Langevin, E. Cerny. An Extended OBDD Representation for Extended FSMs.

Proc. EDAC-ETC-EUROASIC, 1994.

60

[42] B. Littlewood, L. Strigini. Validation of Ultra-High Dependability for Software-based

Systems, Communications of the ACM, Vol. 36, No. 11, November 1993, pp. 69-80.

[43] K. McMillan. Getting Started with SMV: User’s Manual. Cadence Berkley Labora-

tories, USA, 1998.

[44] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,

Massachusetts, 1993.

[45] Microchip Technology Inc. “Embedded Control Handbook”, 1993, pp. 2.121-2.133.

[46] Microchip Technology Inc., “PIC16C71”, 1994, pp. 2.328-2.372.

[47] A. A. Mir, S. Balakrishnan, S. Tahar. Modeling and Verification of Embedded Sys-

tems using Cadence SMV. IEEE Canadian Conference on Electronics and Computer

Engineering (CCECE’2000), Halifax, Novoscotia, Canada, May 2000.

[48] P. Narendran, J. Stillman. Formal Verification of the Sobel Image Processing Chip.

Current Trends in Hardware Verification and Automated Theorem Proving, Spring-

er-Verlag, 1989, pp. 92-127.

[49] S. Owre, J. Rushby, N. Shankar. PVS: A Prototype Verification System. Lecture

Notes in Artificial Intelligence, Springer-Verlag, 1992, Vol. 607, pp. 748-752.

[50] J. Rushby. Quality Measures and Assurance for AI Software, Report No. SRI-CSL-

88-7R, Computer Science Laboratory, SRI International, Menlo Park, September

1988.

[51] M. Srivas, M. Bickford. Formal Verification of a Pipelined Microprocessor. IEEE

Software, Vol. 7, No. 5, September 1990, pp. 52-64.

61

[52] M. K. Srivas, S. P. Miller. Applying Formal Verification to a Commercial Micropro-

cessor. Proc. IFIP Conference on Hardware Description Languages and their Appli-

cations (CHDL’95). Chiba, Japan, August 1995.

[53] S. Tahar, R. Kumar. Implementing a Methodology for Formally Verifying RISC Pro-

cessors in HOL. Higher Order Logic Theorem Proving and its Applications, LNCS

780, Springer Verlag, 1994, pp. 281-294.

[54] O. Thiry, L. Claesen. A Formal Verification Technique for Embedded Software. Proc.

IEEE International Conference on Computer Design (ICCD’96), Austin, Texas, U.

S. A, October 1996, pp. 352-357.

[55] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, A. Sangiovanni-Vindentelli. Implicit

State Enumeration of Finite State Machines using BDDs. International Conference

on Computer-Aided Design (ICCAD’90), San Francisco, California, U. S. A., No-

vember 1990.

[56] P. J. Windley. Formal Modeling and Verification of Microprocessors. IEEE Transac-

tions on Computers, Vol. 44, No. 1, January 1995, pp. 54-72.

[57] Y. Xu. MDG Model Checker User’s Manual, Dept. of Information and Operational

Research, University of Montreal, Montreal, Canada, September 1999.

[58] Y. Xu. Model Checking for a First-order Temporal Logic Using Multiway Decision

Graphs. PhD Thesis, Dept. of Information and Operational Research, University of

Montreal, Montreal, Canada, 1999.

[59] Z. Zhou. Multiway Decision Graphs and their Applications in Automatic Verification

of RTL Designs. PhD. Thesis, Dept. of Information and Operational Research, Uni-

versite de Montreal, Montreal, Canada, 1997.

62

[60] Z. Zhou and N. Boulerice. MDG Tools (V1.0) User’s Manual, Dept. of Information

and Operational Research, University of Montreal, Montreal, Canada, 1996.

63

Appendix A

PIC 16C71 Instruction Set

Instruction
Description Cycles 14-bit Opcode

Mnemonic Operands

Byte-oriented File Register Operations

ADDWF
ANDWF
CLRF
CLRW
COMF
DECF
DECFSZ
INCF
INCFSZ
IORWF
MOVF
MOVWF
NOP
RLF
RRF
SUBWF
SWAPF
XORWF

f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d
f, d
f, d
f
-
f, d
f, d
f, d
f, d
f, d

Add W with f
AND W with f
Clear f
Clear W
Complement f
Decrement f
Decrement f, Skip if 0
Increment f
Increment f, Skip if 0
Inclusive OR W with f
Move f
Move W to f
No Operation
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Swap nibbles in f
Exclusive OR W with f

1
1
1
1
1
1
1(2)
1
1(2)
1
1
1
1
1
1
1
1
1

00 0111 dfff ffff
00 0101 dfff ffff
00 0001 1fff ffff
00 0001 0xxx xxxx
00 1001 dfff ffff
00 0011 dfff ffff
00 1011 dfff ffff
00 1010 dfff ffff
00 1111 dfff ffff
00 0100 dfff ffff
00 1000 dfff ffff
00 0000 1fff ffff
00 0000 0xx0 0000
00 1101 dfff ffff
00 1100 dfff ffff
00 0010 dfff ffff
00 1110 dfff ffff
00 0110 dfff ffff

Bit-oriented File Register Operations

BCF
BSF
BTFSC
BTFSS

f, b
f, b
f, b
f, b

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set

1
1
1(2)
1(2)

01 00bb bfff ffff
01 01bb bfff ffff
01 10bb bfff ffff
01 11bb bfff ffff

Literal and Control Operations

ADDLW
ANDLW
CALL
CLRWDT
GOTO
IORLW
MOVLW
RETFIE
RETLW
RETURN
SLEEP
SUBLW
XORLW

k
k
k
-
k
k
k
k
k
-
-
k
k

Add literal and W
AND literal with W
Call Subroutine
Clear Watchdog Timer
Go to address
Inclusive OR literal with W
Move literal to W
Return from interrupt
Return with literal in W
Return from Subroutine
Go into standby mode
Subtract W from literal
Exclusive OR literal with W

1
1
2
1
2
1
1
2
2
2
1
1
1

11 111x kkkk kkkk
11 1001 kkkk kkkk
10 0kkk kkkk kkkk
00 0000 0110 0100
10 1kkk kkkk kkkk
11 1000 kkkk kkkk
11 00xx kkkk kkkk
00 0000 0110 1001
11 01xx kkkk kkkk
00 0000 0000 1000
00 0000 0110 0011
11 110x kkkk kkkk
11 1010 kkkk kkkk

64

Appendix B

Mouse Controller Embedded Software Application

Figure 1: Flowchart specification ofMain routine

No

MAIN

Initialize I/O port
Get initial button status

status
Button No

Yes

Set trigger flag

XCount=0?
Yes

Set trigger flag

No

Yes

Negate
XCount

Yes

Set trigger flag

Call Routine BYTE
Data<-Y-Coord Byte

Call Routine BYTE
Data<-Y-Coord Byte

Call Routine BYTE
Data<-X-Coord Byte

Call Routine BYTE
Data<-X-Coord Byte

Call Routine BYTE
Data<-Button Byte

Negate

No

Yes

Set trigger flag

No

YCount

Upflag Set?

change?

Set ?
Rightflag

YCount=0?

65

Figure 2: Flowchart specification ofByte routine

BYTE

Count = 0

Trigger flag
= 1 ?

Yes

’0’ -> RD pin
(Start Bit)

No

Call Routine BIT

Trigger flag
= 1 ?

No

Yes

Shift LSB of data
to Carry

Carry

= 1 ?

0 1

’1’ -> RD pin’0’ -> RD pin

Call Routine BIT
Count = Count + 1

No Count
= 1 ?

Yes

Return to Caller

66

Figure 3: Flowchart specification ofBit routine

BIT

XC = 0/1?

XC XC

10

No No

Yes Yes

Xcount = Xcount + 1

Reset RightFlag

Xcount = Xcount + 1

Reset RightFlag

XD = 0/1? XD = 0/1?
1 0

10

Set RightFlag Set RightFlag

YC = 0/1?
0 1

No
YC YC

? ?

? ?

Yes
Yes

No

Ycount = Ycount + 1

Reset UpFlag Reset UpFlag

0

01

1

Delay 0.833 ms

Return to Caller

Ycount = Ycount + 1

YD = 0/1? YD = 0/1?

Set UpFlag Set UpFlag

67

Figure 4: State diagram of specification ofMain routine

Change

Upflag = 0

Upflag = 1

YCount != 0

YCount = 0

Rightflag = 0

Rightflag = 1

XCount != 0

XCount = 0

No Change
Button Status

Button Status

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

68

Figure 5: State diagram of specification ofByte routine

S1

S2

S3

S4

S5

carry = 0
S7

S6

S9 S8

S10

S11

Count = 8

Count != 8

carry = 1

Triggerflag = 1

Triggerflag = 0

Triggerflag = 1

Triggerflag = 0

69

Figure 6: State diagram of specification ofBit routine

S1

S8

S9

S16

S17

YData = 0

YData = 1

YData = 1

YData = 0

RA.xc = 1 RA.xc = 0

RA.yc = 1 RA.yc = 0

CSTAT.xc = 1

CSTAT.xc = 0

CSTAT.xc = 0

CSTAT.xc = 1

XData = 0

XData = 1

XData = 1

XData = 0

CSTAT.yc = 0

CSTAT.yc = 1

CSTAT.yc = 1

CSTAT.yc = 0

S2

S3

S4

S5

S6

S7

S10

S11

S12

S13

S14

S15

70

Appendix C

Proof of Hierarchical Approach

This section outlines a formal proof of the hierarchical approach to modeling and

verification of embedded software. The approach is illustrated on a simple typical

embedded software (Appendix C, Figure 1).

Let:

I be the set of all external inputs

O be the set of all outputs

S1 be the set of all states of the calling routine

S10 be the state of the calling routine when calling the subroutine

S11 be the state of the calling routine when returning

from the subroutine

i1 be the set of all inputs to the calling routine

o1 be the set of all outputs of the calling routine

i2 be the set of all inputs to the subroutine

o2 be the set of all outputs of the subroutine

Given that:

i2 is (S10 ∪ i1)

o2 is (S10 ∪ o1)

71

Figure 1: Generic black box representation of Embedded Software routines

To Prove:

∀I ∀S1 O is correct and S11 is correct

For all external inputs to the calling routine and the subroutine, and

for all states of the calling routine, it is guaranteed that the new state

of the calling routine and the external outputs are correct

Proof:

The routines are verified starting from the inner most subroutine,

and successively replacing the behavior of the verified subroutines in

the calling routine.

Verf.#1: ∀i2 o2 is verified

Verf.#2: ∀i1 S10 is verified

Verf.#3: ∀i1 S11 is verified

Deduction:

From Verf.#1 and Verf. #2,

∀S10 o2 is verified, for the values that affect o2

Calling
Routine

Called
Routine1i

1o

i2

2
o

72

∀S10 that does not affect o2, is don’t care

From Verf.#3, and

Since, i2 is (S10 ∪ i1)

o2 is (S10 ∪ o1)

Thus, ∀I ∀S1 O and S11 are proved to be correct

When the state of the calling (outer) routine is unaffected by the called

(inner) routine, then the verification and the proof process is further simplified

as shown below:

Let:

i1 be the set of all inputs of the routine #1

i2 be the set of all inputs of the routine #2

i3 be the set of all inputs of the routine #3

o1 be the set of all inputs of the routine #1

o2 be the set of all inputs of the routine #2

o3 be the set of all inputs of the routine #3

Given that:

i2 is a subset of o1

i3 is a subset of (o1 ∪ o2)

To Prove:

73

∀ i1 o3 is correct

Proof:

The routines are verified separately and independently of the other.

Verf.#1: ∀ i3, o3 is verified

Verf.#2: ∀ i2, o2 is verified

Verf.#3: ∀ i1, o1 is verified

Deduction:

From Verf.#1, Verf.#2, Verf.#3, and

Since, i2 is a subset of o1

i3 is a subset of (o1 ∪ o2)

Thus, ∀ i1, o3 is proved to be correct

