A Hierarchical Approach to the Formal Verification of
Embedded Systems Using MDGs

Subhashini Balakrishnan

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

November 1999

© Subhashini Balakrishnan, 1999



Abstract

A Hierarchical Approach to the Formal Verification of
Embedded Systems Using MDGs

Embedded systems are finding widespread application including communication
systems, factory automation, graphics and imaging systems, medical equipment and even
household appliances. With the increasing emergence of mixed hardware/software
systems, it is important to ensure the correctness of such a system formally, particularly for
real-time and safety critical applications. In this thesis, a hierarchical approach to modeling
and formally verifying a complete embedded system at higher levels of abstraction, using
Multiway Decision Graphs (MDGS), is proposed. The approach is demonstrated on the
embedded software for a mouse controller application on a commercial microcontroller

(PIC 16C71) from Microchip Technologies Inc..

The embedded system is modeled at different levels of the design hierarchy i.e., the
microcontroller RT level, the microcontroller Instruction Set Architecture (ISA), the
embedded software assembly code level and the embedded software flowchart
specification. The correctness of the system hardware platform in implementing its
intended architecture is established by formally verifying the equivalence between the RTL
hardware and the ISA, using the MDG sequential equivalence checking tool. The next step
is taken to verify the particular application embedded in the system by checking the

equivalence between the assembly code and its intended behavior, specified as a flowchart.



Further verification is done on the models through the property checking procedure
provided by the MDG tools. Liveness properties are also checked using the newly
developed MDG model checking procedure.

Inconsistencies in the assembly code with respect to the specification, as published in
the application notes of the manufacturer, were uncovered through the verification
experiments. Given the relatively small CPU time and memory consumption achieved in
the experiments, the verification approach that is adopted was able to verify a whole

embedded system in an automated environment.
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Chapter 1

Introduction

1.1 Formal Verification

Hardware and software designs are rapidly increasing in complexity. Traditionally,
testing and simulation are used to check the design correctness. Simulation catches some
problems, but not exhaustively. The increasing concurrence and complexity of designs
exacerbates this problem: detecting every bug resulting from the complex interaction of
concurrent events by simulation becomes highly improbable (or prohibitively time
consuming). Testing and simulation are inadequate to certify that a system behaves
correctly. High costs (time, money, security and possibly lives) are incurred because a
system is typically delivered with design errors, and hence must go through several design
iterations. Improved debugging tools and methodologies are critical to avoid the expenses

and delays resulting from discovering bugs late in the design phase.

To accelerate the design and assure the correctness of complex systems, a hierarchical
design approach, as shown in Figure 1.1 is usually adopted [30]. The designer first
manually derives the requirements of the system as the system behavioral specification.
This specification is then refined manually or using CAD tools into more detailed
descriptions such as register-transfer (RT), logic and mask level descriptions. As the late
detection of design errors is largely responsible for unexpected delays in realizing the

hardware design, it is extremely important to ensure correctness in each design step. With
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correct-by-construction design style, automatic tools, such as behavioral and logic
synthesis techniques can be used to ensure behavioral and gate level design correctness.
However, the refinement process from high-level specification to synthesizable design
usually requires manual fine tuning to achieve high performance. More progress is needed
to automate the design process at higher levels in order to produce designs of the same
guality as is achievable by hand. It is thus essential that the specification (or behavior) and
the intermediate design stages be verified for consistency and correctness with respect to
some user-specified properties or a previous level of the specification, thus making post-

design verification essential.

This situation has prompted interest in verification techniques. Formal methods have
long been developed and advocated within the computing science research community as
providing sound mathematical foundation for the specification, implementation and
verification of computer systems. These methods exploit representations with formally
defined semantics in order to describe abstractly (independent of details of
implementation) the desired functional behavior of a system [4]. Such formalization
methods provide precise and unambiguous system specifications which can be checked for
completeness and internal logical consistency. The mathematical nature of these
specifications enable reasoning about consistency (i.e., whether the system dynamics is
consistent with system’s static properties) and the deduction of consequences of the
specification. These can be checked against the user's expectations and used to generate

tests for the system implementation.

Specifications in an executable formal language allow direct simulations (animations)
of system behavior, giving early feedback to be compared with user requirements before
full system development is begun. Equally important in the system development process, a

formal specification is a yardstick against which to verify implementations or



implementation steps through mathematical proof of the equivalence of abstract and
concrete representations of system operations or data structures [36]. A formally based
development methodology requires in effect that a mathematical theory of the desired
system be created, documented and analysed. This foundation activity entails a greater
proportion of time and effort being invested in the initial pre-design phases of system

development than is now commonly the case.

Thanks to the rigorous discipline imposed by these methods, system development
phases are rendered less error-prone, more systematic and amenable to computer
assistance, and hence higher quality products achieved. Thus, formal verification is
proposed as a method to help certify hardware and software, and consequently, to increase
confidence in new designs. Formally verifying designs may be cost effective in “safety
critical” applications, for systems in high volume or remotely placed, and for systems that
will go through frequent redesign because of changes in technology. Recently, formal
verification has been considered as a powerful complementary approach to simulation and

has made exciting progress [34].

1.2 Formal Verification Methodologies

Various formal verification methodologies have sprung up in the recent past. They could
be classified based on the following:
* Proof method:
- Theorem proving
- Model checking

- Machine equivalence



- Language containment/equivalence

- Trace conformance

« User interaction:
- Interactive verification

- Automated verification

» Class of circuits we wish to verify:
- Combinational/Sequential
- Synchronous/Asynchronous
- Pipelined hardware

- Parameterized hardware

1.2.1 Theorem proving

With theorem proving, an implementation and its specification are usually expressed as
first-order or higher-order logic formulas. Their relationship, stated as equivalence or
implication, is regarded as a theorem to be proven within the logic system, using axioms
and inference rules. Thus, theorem proving is a powerful verification technique. It can
provide a unifying framework for various verification tasks at different hierarchical levels.
However, the task of proving complex theorems needs expertise. A theorem prover or proof
checker is a tool developed to partially automate the proof process or to check a manual
proof. Theorem proving systems are being widely used both in the hardware and software
verification, on an industrial scale. Some of the well-known ones are HOL (Higher-Order
Logic) [33], PVS (Prototype Verification System) [49], Ngthm (a Boyer-Moore theorem

prover) [5] and ACL2 [39].



1.2.2 FSM-based verification

In FSM-based verification, synchronous sequential designs are modeled as finite state
machines. These models are represented using data structures known as Binary Decision
Diagrams (BDDs). The basic method of verification is based on automated state
enumeration of the FSM, callagachability analysi§23, 59, 60]. Both equivalence and
property checking can be performed using this technique. Equivalence checking verifies
that an implementation has the same outputs as that of the specification, for all input
sequences, wherein both the implementation and the specification are modeled as FSMs.
Property checking verifies the validity of a specification, expressed as a set of properties,
on an implementation, modeled as an FSM. A well-known approach for property
verification is Computational Tree Logic (CTL) model checking [44]. A specification for
model checking is a collection of properties, expressed in CTL which can concisely capture
temporal relationships between states. The model represents the model of the system which

is to be verified.

The major advantage of the FSM-based verification is automation, apart from rendering
easier formalization of issues like concurrence, fairness etc. But, the two serious drawbacks
are state explosion and boolean representation. The use of Bryant's ROBDDs [8] reduces
the complexity to linear, with respect to the width of the datapath, for certain kinds of
circuits. This significantly enlarged the useful domain of the FSM-based verification. A
number of tools have been developed, the two well-known among them are the SMV

(Symbolic Model Verifier) [44] and the VIS (Verification Interacting with Synthesis) [6].

The limitations of the FSM-based methods have been attacked in two main directions:

Problem reduction and representation of hardware at different abstraction levels.



Problem reduction techniques such as data abstraction, homomorphic reductions, data-
independent systems, or restating a verification problem in terms of the controller alone are
all restricted to the particular problem at hand and the equivalence of the original problem
to the reduced or restricted or restated ones is not always obvious and is not verified

mechanically. This requires a user’s ingenuity for each particular problem.

Recently a number of ROBDD extensions such as BMDs [9], HDDs [16] or K*BMDs
[25] have been developed to represent arithmetic functions more compactly than ROBDDs.
An improvement is the EOBDDs [41] that can have leaf nodes labelled by terms containing
abstract sorts. MDGs, the successor of EOBDDs, allow the labelling of edges to be first
order terms and non-terminal nodes to be abstract variables. ROBDDs, MDDs and
MTBDDs are special cases of MDGs and can be turned into MDGs by transforming them

from graphs representing functions into graphs representing relations.

In this thesis, MDGs are used to model and verify embedded systems, automatically in
a hierarchical manner. Chapter 2 is devoted to giving details on MDGs and the MDG

verification system.

1.3 Embedded systems

Advances in VLSI and synthesis technology have made it flexible to construct powerful
programmable components (microprocessors) as well as complex specialized components.
Today, electronic products consist of a mixture of hardware and software components. An
embedded system is regarded as a product which contains a microprocessor programmed
to carry out some control functions but which is not itself a computer [27]. An embedded

system encompasses a broad class of systems, ranging, in principle, from a simple



microprocessor based apparata to complex systems controlling large plants, aircrafts and
the like.

In general [40]:

(1) An embedded system is an electronic system embedded within a given plant or
external process. The external process comprises both a physical system (usually consisting
of different subsystems) and also humans performing some supervising or parameter

setting tasks.

(2) Most embedded systems must fulfill stringent reliability requirements, usually

detailed according to a set of functions to be performed.

1.4 Related Work

In the recent past significant success was attained in verifying microprocessor hardware
designs using various approaches including theorem provers, verification using meta

languages, functional approaches and decision diagram based approaches.

Gordon [32] first verified a simple computer using the LCF_LSM system [31], which
was an early example of how formal proof and mechanical proof-generation could be used
to reason about the design of a microprocessor. Hunt [35] proceeded to verify the
microprocessor FM8501 using Boyer-Moore theorem prover [5]. Hunt was the first to
consider the implementation of a handshaking protocol in a microprocessor system. Cohn
[18, 19, 20] verified the commercial microprocessor VIPER using HOL [33]. Cohn came
up with two level of proofs, the first level dealing with the flow of control, and the second
level dealing with the block level description. The VIPER project shows how the design of

a microprocessor can be subjected to formal analysis in a series of decreasingly abstract



levels. Joyce verified the Tamarack-3 microprocessor [38] using HOL. The verification is

done at a high level of abstraction that he did not even mention the width of the datapath.
He gave a generic specification of a simplified multi-layered Tamarack stack, categorized
into a compiler and a microprocessor, and described how to link the compiler to the

microprocessor. Windley [56] also proposed a general methodology for verifying generic
interpreters of micorprogrammed processors, using HOL. Srivas and Bickford [51] verified

the pipelined microprocessor MiniCayuga using the Clio theorem proving system. Tahar
and Kumar [53] proposed a general methodology for verifying pipelined RISC processors
using HOL. Srivas and Miller [52] reported the verification of a modern complex

commercial processor, AAMP5 using PVS [49].

Recently, a number of automatic verification methods have been explored for verifying
microprocessor designs. Burch and Dill’'s [12, 37] validity checking algorithm is an
efficient approach for instruction set processor verification. A logic expression
representing the correctness statement is generated using symbolic simulation. The validity
checking algorithm is then used to verify if the expression is valid. With carefully chosen
heuristics to avoid exponential case splitting, the authors verified a subset of the RISC
pipeline processor DLX [12] and a protocol processor [37]. Galter [29] presented a similar
approach for the verification of processors. Two ITE-expressions (If-Then-Else) which
represent the functions of the specification and the implementation are derived using
symbolic execution. They are then compared for syntactic equivalence. A technique called
IF-algebra was developed to simplify the exponentially growing IF expressions. The

Tamarack-3 microprocessor benchmark was verified using this method. Verification



methodologies combining symbolic simulation and theorem proving were also explored by

Barringer [3] and Cyrluk and Narendran [24].

As more and more processors are being specialized for embedded applications, there
arose an imperative need to focus on verifying the software embedded in the processors.
Thiry and Claesen [54] suggested a methodology for formally verifying an embedded
software [45] running on a microcontroller [46], using the SMV tool [44]. Their intention
was to model the machine architecture as an instruction interpreter and the assembly code
as a finite state machine. They presented a model of the execution of the embedded
assembly language software on the microcontroller hardware. The model is represented at
the boolean level. They used the flowchart specification of the embedded software to derive
properties of the software routine, and represented them using CTL temporal logic [26].
They verified the properties on the software model using the SMV tool. The SMV uses the
ROBDD symbolic model checking algorithm [11] to find out whether the CTL
specifications are satisfied on the model. More recently, Brock and Hunt [7] specified and
verified programs for the Motorola Complex Arithmetic Digital Signal Processor (CAP)
using ACL-2 theorem-proving system [39]. They completely specified the CAP super-
scalar processor in a high level behavioral model and mechanically verified a simple FIR

filter and a high-speed searching algorithm, represented as machine code, using ACL-2.

1.5 Scope of Thesis

Interest in hardware/software codesign [10] has been on the rise for the past couple of
years, and this interest has been manifesting itself in the emergence of exotic tools to

facilitate the design of entire systems. With the increasing application of mixed hardware/

10



software systems in embedded computers and safety critical systems, there is need to
produce high integrity systems that are correct in all situations. Several authors have
demonstrated the infeasibility of showing that such systems meet ultra-high reliability
requirements through testing alone [13, 42]. Although completely reliable systems cannot
be guaranteed, the use of formal methods is an alternative approach that systematically

analyses all cases in a design and specification.

The work of Thiry and Claesen [54] and Brock and Hunt [7] provided an inspiration to
expand the scope of formal verification into embedded system verification. While a
symbolic model checker is restricted to representation at the boolean level, a theorem
prover is restricted to users with a lot of expertise and experience. Thus, the motivation
behind this work is the search for a methodology that could handle the modeling and
verification of a whole embedded system at various levels of abstraction, that could enable
the verification to be integrated into the design process. The verification tools based on
MDGs presented a way for experimenting with such an approach. Several successful
hardware verification results have been reported using the MDG verification system [13].

The preliminary results obtained in [1, 2] provided an encouragement behind this work.

In this thesis, an application of formal methods to verify embedded systems in a
hierarchical manner, using Abstract State Machines (ASMs) [23], based on Multiway
Decision Graphs (MDGSs) [23] is proposed. The approach is demonstrated on an embedded
software for a serial mouse controller application [45] programmed on the microcontroller
PIC16C71, commercialized by Microchip Technology Inc., [46]. Itillustrates the ability to

carry out equivalence checking, in addition to checking properties, using ASMs. Thus, it

11



paves a way for automatic verification of a complete embedded system at higher levels of
abstraction.

The rest of this thesis is organized as follows: Chapter 2 is a brief introduction to
Multiway Decision Graphs and its related verification techniques. Chapters 3 and 4
illustrate, through simple examples, the hierarchical approach to modeling and verification
of an embedded system using MDGs. Chapter 5 gives a description of an embedded system
case study and the application of the hierarchical modeling and verification on the target
system. The model checking experiments performed on the target system are also reported,
along with a comparison study of the results obtained using MDG model checking with that
of SMV model checking. The conclusions and ideas on further work are presented in

Chapter 6.

12



Chapter 2

Multiway Decision Graphs

Multiway Decision Graphs (MDGs) have been proposed recently [23] to represent
circuits with datapath. The MDG tool combines the advantages of representing a circuit at
higher abstract levels as is possible in a theorem prover, and of the automation offered by
ROBDD based tools. MDGs, a new class of decision graphs, comprises, but is much

broader than the class of ROBDDs.

2.1 Multiway Decision Graphs

The formal system underlying MDGs is a subset of many-sorted first order logic,
augmented with a distinction betweabstractand concretesorts. Concrete sorts have
enumerationsvhile abstract sorts do not. The enumeration of a concreteisisra set of
distinct constants of soxt. The constants occurring in enumerations are referred to as
individual constantsand other constants generic constantand could be viewed as 0-ary
function symbols. The distinction between abstract and concrete sorts lead to a distinction
between three kinds of function symbols. L&t a function symbol of type; X a, X... X
0, — O If Op4q S @an abstract sort, théns anabstract function symbolf all the a;...

0 ,+1are concrete, thefris aconcrete function symbdf a1 is concrete while at least one
of the ay... Oy, is abstract, thet is referred to as &ross-operator Concrete function
symbols must have explicit definition; they can be eliminated and do not appear in MDGs.

Abstract function symbols and cross-operatorsiareterpreted

13



An MDG is afinite, directed acyclic graph (DAG). An internal node of an MDG can be
a variable of concrete sort with its edge labels being the individual constants in the
enumeration of the sort; or it can be a variable of abstract sort and its edges are labeled by
abstract terms of the same sort; or it can be a cross-term (whose function symbol is a cross-
operator). An MDG may only have one leaf node denoted ,ashich means all paths in
an MDG are true formulae. Thus, MDGs essentially represent relations rather than

functions. MDGs can also represent sets of states.

2.2 Modeling Hardware with MDGs

Using MDGs a data value can be represented by a single variable of abstract sort, rather
than by concrete Boolean variables. Variables of abstract sort are used to denote data
signals anduninterpreted function symbots denote data operations. Cross-operators (a
special case of uninterpreted functions) are useful for modeling feedback from datapath to
the control circuitry. They are thus much more compact than ROBDDs for designs
containing datapath, and sequential circuits can be verified independently of the width of

the datapath.

X

%

Figure 2.1: MDG for an OR gate

14



Fig. 2.1 shows an OR gate and its MDG representation, for a particular ordering of the
variables. Boolean MDGs are essentially the same as ROBDDs. In the MDG system,
abstract descriptions of state machines, callbdtract State Maching@\SMs) [23] are
used to model the systems. ASMs are a new way of describing state machines. They admit
non-finite state machines as models in addition to their intended finite interpretations. An
ASM is obtained by letting some data input, state or output variables of a finite state
machine (FSM) be of abstract sort, and the datapath operations be uninterpreted function
symbols. Fig. 2.2 shows a tabular description of a simple ASM, with its MDG
representation, whepeis a Boolean inputa is an abstract state variable aadis its next
state variable. It performac operation whex = 1, whereinc is an uninterpreted function

symbol.

X a
0 a
1 inc(a)

Figure 2.2: MDG for a simple ASM

In analogy to ROBDDs, which are used to represent sets of states and transition/output
relations for FSMs, MDGs are used to compactly encode sets of (abstract) states and
transition/output relations for ASMs. Thus the implicit enumeration technique [55] is lifted
from the Boolean level to the abstract level, and refer to itrg®icit abstract enumeration
[22]. This makes it possible to verify a circuit at the register transfer (RT) level without

getting bogged down with the details of a gate level implementation. Thereby, the use of

15



ASMs raises the level of abstraction of automated verification methods to approach those

of interactive theorem proving methods, without sacrificing automation.

2.3 MDG-based Verification

Like ROBDDs, MDGs must baeducedand ordered They obey a set of well-
formedness conditions, which turns MDGs into a canonical representation, which is used
by the combinational equivalence checking procedure of the MDG tools (Section 2.3.1).
This is, unfortunately, not of much use in treachability analysiprocedure, because the
descriptions of the sets of states involves an implicit existential quantification over abstract

variables which removes the canonicity property.

Algorithms for computingdisjunction relational product(conjunctionfollowed by
existential quantification [23]pruning-by-subsumtiorfPbyS for test of set inclusion [23])
andreachability analysigusing implicit abstract enumeration) have been implemented in
the MDG software package [14]. Except BbyS the operations are a generalization of
first-order terms of algorithms on ROBDD, with some restrictions on the appearance of
abstract variables in the arguments. Since in the underlying logic of MDG there is no
complement of expression involving equality over abstract teRbhgSapproximates the
relative complement between two formuRandQ, by removing fronP those MDG paths
(conjuncts) that are subsumed by some path.iNamely, if R=Pby3P, Q), thenFR [

(V) Q - PO(J) Q[59].

In the reachability analysigrocedure, starting from the set of initial states, the set of
states reached in one transition is computed by the relational product operation. The

frontier set of states is obtained by removing the already visited states from the set of newly

16



reached states using the pruning-by-subsumtieloy§ operation. If the frontier set of
states is empty, then theachability analysiprocedure terminates, since there are no more
unexplored states. Otherwise the newly reached states are mergeddfagingtior) with

the already visited states and the procedure continues the next iteration, with the states in

the frontier set as the set of initial states.

In addition to the logic operations, a facility to carry out simple rewriting of terms that
appear in the MDGs is also included. This allows us to provide a partial interpretation to
(some) of the uninterpreted function symbols. For examplegiibis an abstract generic
constant of sortvordnandeqZx) a cross-operator of typsvprdn— bool|, then we could
provide a partial interpretation @&qzusing the rewrite ruleqfzerg — 1, indicating that
equatto-zerois 1 when the argument zero(but not revealing anything about the other
values). User selected rewrite rules are applied anytime a new term is formed during MDG
operations. In general, rewriting simplifies MDGs and helps remove false negatives during
safety property checking, thus likely avoiding non-termination ofrfahability analysis
procedure for designs that depend on interpretation of operators for correct operation. A
detailed description of the operations and algorithms can be found in [59]; some possible

solutions to the non-termination problem are addressed in [14].

MDGs are used as the underlying representation for a set of hardware verification tools,
providing both validity checking and verification based on state-space exploration [23].
The MDG tools package the basic MDG operators and verification procedures. The
operators are disjunction, pruning-by-subsumption, and term-rewriting. The following are

the verification procedures provided in the MDG software package:
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2.3.1 Combinational Verification

The combinational verification provides equivalence checking and safety property
checking of two combinational circuits. The MDGs representing the input-output relation
of each circuit are computed using the relational product of the MDGs of the components
of the circuits. Then, taking advantage of the canonicity of MDGs, it is verified whether the

two MDG graphs are isomorphic.

2.3.2 Safety Property Checking

A given safety property, a logic expression, is expressed as an invariant condition. An
invariant condition can be specified by a combinational circuit whose output signals are
named by the variables that occur in the condition. An MDG representing the invariant
condition is obtained from the MDG representing the functionality of the combinational
circuit by existentially quantifying the concrete inputs. The variables representing abstract
inputs are left in the graph as implicitly quantified secondary variables. The state space of
the given circuit (modeled as an ASM) is explored in each state using syméadibability
analysis It is verified that the specified property is satisfied (i.e., it is invariant over the

reachable state space) by the given circuit.

2.3.3 Sequential Verification

Sequential verification provides equivalence checking of two component state
machines. The transition relation of the two ASMs is represented by an MDG, computed
by the relational product algorithm from the MDGs of the components, which are
themselves abstract machines. In other words, the relational product computes the

(synchronous) product machine of the component ASMs. The behavioral equivalence of
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two sequential circuits, modeled as ASMs, is verified by checking whether the circuits
produce the same sequence of outputs for every sequence of inputs. This is achieved by
forming the product circuit consisting of the two circuits, feeding the same inputs to both
of them, and verifying an invariant asserting the equality of the corresponding outputs in

all reachable states.

2.3.4 Model Checking

Model checking feature has been recently developed [58] and incorporated into the
existing MDG system. This provides both safety and liveness property checking using the
implicit abstract enumeration of an ASM [57]. The properties are represented in a first-
order linear time temporal logic, calldd,pg. The ASM model of the_y,pg formula is
constructed, along with a simplified invariant. The ASM of thghg is composed with the
original model and the simplified invariant is checked on the composite machine, using the

implicit abstract enumeration of an ASM [57].

2.3.5 Counterexample Generation

When invariant checking fails, the MDG tools generate a counterexample to help tracing
the source of the error. A counterexample consists of a list of assumptions, input and state
values in each clock cycle, which provides a trace leading from the initial state to the faulty
behavior. At present, the counterexample generation feature is not provided in the MDG

model checking algorithm.

The MDG system uses MDG-HDL [60] as the front-end description language, which
allows the use of abstract variables and uninterpreted function symbols. MDG-HDL

supports structural descriptions, behavioral ASM descriptions, or a mixture of structural
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and behavioral descriptions. A structural description is usually a (hierarchical) network of
components (modules) connected by signals.

The MDG-HDL comes with a large library of predefined, commonly used, basic
components (such as logic gates, multiplexers, registers, bus drivers, ROMs, etc.) [60]. A
behavioral description is given by high-level constructs as ITE (If-Then-Else) formulas,
CASE formulas or tabular representations. The tabular constructor is similar to a truth table
but allows first-order terms in rows. The MDG-HDL description is then compiled into the
ASM model in internal MDG data structures [60]. The MDG tools run on a Prolog
platform. Interested readers are referred to [14, 23, 57, 58, 59, 60] for more details on the

MDG algorithms and tools.
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Chapter 3

Hierarchical Modeling of Embedded Systems with
MDGs

3.1 Introduction

A specificationand anmplementatiorare two descriptions of a system, be it hardware,
software, or both, where the specification is a more abstract view of an implementation. A
specification could be a behavioral description, which again could be complete or partial.
In the latter case, the specification would be a set of properties. In the MDG system, an
ASM can be used to describe a specification or an implementation. In our application, each
state in the ASM characterizes the contents of the microcontroller registers. The statements
of a specification or the instructions in an assembly code control the transition from one

state to another.

An embedded system comprises both the hardware and the embedded application
software. A hierarchical approach to modeling an embedded system is proposed at different
levels of the design hierarchy, thus enabling the verification to be applied at various stages
during the design process. The system is modeled in a hierarchical approach at four distinct
levels namely, the embedded system hardware architecture at the RT level, the Instruction
set architecture, the embedded software behavioral specification, and its assembly

language implementation.
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3.2 Microcontroller RTL Architecture

A common general purpose microcontroller comprises the following basic components:
program memory, instruction register, instruction decoder, register file, ALU, working
register, a system bus, and a program counter. One of the prime advantage in using MDGs
is the ability to handle abstract descriptions. This avoids all the cumbersome procedure of
defining each bit of aregister. Rather, a register can be viewed as an abstract variable. Thus,
an 8-bit general purpose register of the microcontroller can be modeled as a variable of
abstract sortvorda8instead of a concrete sort with enumeration {0,...., 255}. A program
counter (say, 10-bit wide) can be modeled as a variable of abstrast@a®10 Another
advantage in using MDGs is the ability to represent uninterpreted functions. This enables
the program memory, register file, and the ALU to be viewed as black boxes. For instance,
the uninterpreted function symb@tchis used to model the instruction fetch from the
program memory. A register file accesses are described in terms of functionsdikend
write, modeled as uninterpreted function symbols. The ALU functions are expressed using
uninterpreted function symbols e.@dd sul inc, or etc. In MDG-HDL, the system bus

can be modeled using the basic compodentrs.

3.3 Microcontroller IS Architecture

The instruction set of a microcontroller typically includes mathematical operations,
logical operations, transfer operations, control operations and no-operation. Using MDGs
the assembly instructions can be modeled as predicates. Predicates can be described using
the MDG-HDL basic library functionfransform The operations (e.g., mathematical,

logical) can be modeled using uninterpreted functions (@dd, inc, or, move goto),
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applied to the arguments of the instructions (predicates). This is illustrated on the following
two instructions: the inclusive-OR instructio®R R YWbetween a registeiRj and a

working register(YJ, and the increment instructiofNCR W of the working registen\yy.

Assembly Instruction: ORR W

MDG-HDL Model:

Definitions: var(W, worda8)

var(R, worda8)

function(  or, inputs[worda8, worda8], output[worda8])

Instruction: transform(inputs([W, R]), function( or ), output(W))

Assembly Instruction: INCR W

MDG-HDL Model:

Definitions: var(W, worda8)

function(  inc , input[worda8], output[worda8])

Instruction: transform(inputs([W]), function( inc ), output(W))

The instruction fetch is modeled using the uninterpreted function syrfdioh.
Decoding specific bits of an instruction can be modeled in a similar way, e.g., the
uninterpreted functionget opcode models the decoding of the operation from the
instruction, andget src_ op and get dest op models the decoding of the source and

destination operands respectively from the instruction.
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3.4 Embedded Software

The embedded software models are represented as ASMs. In MDG-HDL, an ASM is
described mainly in terms of a tabular representation. Each row in a table represents a
CASE statement. Each column consists of an input condition and the last column gives
either an output or a transition relation of a state variable. The default value for a CASE
statement can be shown in an optional row [60]. In the following, models for the behavior
of an example embedded software and its implementation in assembly language code,

using MDGs, are presented.

3.4.1 Embedded Software Behavior

One common way of describing the intended behavior is by using algorithmic
flowcharts. Hence, we consider the flowchart of the embedded software program as the
behavioral specification. An example flowchart, its ASM model and its description in
MDG-HDL is shown in Figure 3.1. The ASM model consists of three states, which are
labeled “S0” to “S2”. Each state implements one step in the flowchart. A step may consist
of many operations that could be done concurrently. In the MDG-HDL model the registers
R1andR2are of abstract sowworda8 andb1 of abstract sortvordc3 The model uses the
abstract functiondecr, setbandresetbto decrement, set and clear a register respectively,
and the cross functiotestbitforzerao test a particular bit of a register for zero condition.

They are defined with following typ&s
decr. [worda8 — worda§

setb:[worda8 worda3 - wordag

1. The notatiorf: [a - ] implies that the functiohhas argument of sontand range of sofl.
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resetb:[worda8 worda3 —» wordag

testbitforzeroJwordag8 worda3 - bool|

Flowchart:
decr(R1)
setb(R2.b2)
Yes
ASM model:

N

MDG-HDL model: initialize s=0
cases=0: R1=decr(R1)
R2 = seth(R2,b2)
next(s) =1
cases=1:. iftestbitforzero(R1,b1l) =0
then next(s) = 2
else next(s) =0

cases=2: R2=resetb(R2,b2)

Figure 3.1: An example flowchart and its ASM model

While, each step in the flowchart must be executed in succession, the MDG system

interprets its statements, written in MDG-HDL code, in parallel, unless otherwise stated.
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An explicit clock Sis defined in order to suppress the inherent parallelism of the MDG

system (see Figure 3.8is defined to be of concrete sarordc2

3.4.2 Embedded Software Implementation

Assembly code: 00 START DECR R1

01 SETB R2.b2
02 SKBZ R1.b1
03 GOTO START
04 RESETB R2.b2
Notations:
DECR Ri decrement and updates register Ri
SETB Ri.bj sets bit j of register Ri
SKBZ Ribj skip next instruction, if bit j of reg Ri is reset
GOTO L jump to the address indicated by the label L

RESETB Ri.bj resets bit j of register Ri

ASM model:

R1.b1=0

MDG-HDL model: initialize pc =0
case pc = 0: next(pc) = 1
R1 =decr(R1)
case pc = 1: next(pc) = 2
R2 = seth(R2,b2)
case pc = 2: if testbitforzero(R1,b1) = 0
then next(pc) = 4
else next(pc) =3

case pc = 3: next(pc) =0
case pc = 4: R2 =resetb(R2,b2)

R1bl=1

oo

Figure 3.2: An example assembly code fragment and its MDG model

The implementation considered here is the assembly language code programmed
(embedded) in a microcontroller. Figure 3.2 illustrates an example of assembly code
program, its ASM model, and its description in MDG-HDL. The assembly code

implementation is modeled as a set of instructions implementing the control behavior of a
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routine. This is represented as an ASM, as shown by the state diagram in Figure 3.2. The
ASM model has five states. Labels “00” to “04” refer to the five states of the ASM. Each
state implements one instruction of the program. As is adopted in the behavior, this model
uses the same abstract functiatecrto decrement a register, and abstract functeeth
andresetbto set and clear a particular bit of a register respectively, and the cross function
testbitforzerato test if the value of a particular bit of a register is zero. The abstract sort
worda8is used to model the registeiRl andR2 and the abstract sonorda3is used to

model the bit91andb2. Here, thepc, of concrete somvordc3 sequences the execution of

each instruction (see Figure 3.2).
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Chapter 4

Hierarchical Verification of Embedded Systems
with MDGs

4.1 Introduction

The sequential equivalence checking, property checking and model checking

procedures of the MDG system are used to carry out our verification experiments.

Sequential equivalence checking between the specification (or behavior) and the
implementation is done to ensure that the implemented circuit or assembly code reflects its
intended behavior. In the MDG software package, sequential equivalence is ensured when
the outputs of the specification are the same as those of the implementation at every clock
cycle [60]. This is achieved by feeding the same inputs to the two circuits, thereby forming

aparallel combinatiorof the circuits, which implements tipeoduct maching23] [59].

Since a specification is an abstract behavior, it does not necessarily produce its outputs
during the same clock cycles as its implementation does. A sequential ASM behavior
would take lesser clock cycles than its implementation. Thus, we need a way to synchronize
both. We achieve this by introducing a varialdgnc which keeps track of the execution
of each instruction in the implementation (RTL hardware or the assembly code). This is
passed as an input to the specification (ISA or the flowchart behavior), wherein it delays
each of its output until its implementation is ready to produce the same output. This is done

in a simple way in MDG-HDL by adding a new input column in each of the output table
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descriptions in the specification, under the nasyac Also, it is mandatory in the MDG
system that the specification and the implementation be required to use the same function

symbols while carrying out equivalence checking [60].

Property verification is used for verifying that a design satisfies some specific
requirements. Property verification in the MDG system can be achieved through invariant

checking [60] and model checking [57].

4.2 Hierarchical Verification Approach

A bottom-up approach is adopted to verify the embedded system model. First the
correctness of the microcontroller hardware (RT level) in implementing its instruction set
architecture is verified. Having ensured the fact that each of the instructions in the
instruction set is correctly executed in the hardware, it is then proceeded to verify the
embedded assembly program against its behavioral specification. This paves a way for
automatic verification of an embedded system hierarchically at different levels of

abstraction.

4.2.1 Verification of the ISA

The instruction set architecture of a microcontroller is the specification of the effect that
each instruction is intended to have on the visible state, which consists of the visible
registers and memory. To verify a microcontroller implementation against its instruction

set is to verify that the hardware execution of every instruction has the intended effect.

Let circuit M be the microcontroller architectur® is compared with an ideal state

machineM’, whose state is the visible stateMfand where each transition corresponds to

29



the execution of an instruction as specified by the architecture. The control FSM of a
conventional microcontroller has a distinguished ready state that is the starting point of
instruction execution, which is signalled by the starting of the fetch cycle. This ready state
is extracted fronM and is used as theyncto achieve synchronization betwekhandM’:
whenready= 1 the specified transition takes placeMn, otherwise\I’ remains in the same
state. Using the sequential equivalence checking algorithm of the MDG package the
respective contents of the program counter, program memory, instruction register and the
general purpose registers between the RTL implementation (mabdhirend the ISA

(machineM’) are compared at eackadystate [59].

4.2.2 Verification of the Embedded Software

4.2.2.1 Equivalence Checking

Verification of the embedded software is done by comparing the value of the flags and
registers between the behavioral flowchart and the implemented assembly code program.
The behavioral specification consumes less clock cycles than the assembly program.
Hence, in the assembly implementation a variayecis declared and is defined to be
equal to thepc. It is an output from the implementation and is taken as an input for the
specification. Below is shown the synchronized MDG model for the specification that is

amenable to sequential equivalence checking:
Synchronized MDG-HDL model for the specification:
case s = 0: when(sync = 0) R1 = decr(R1)
when(sync = 1) R2 = setb(R2,b2)

next(s) = 1
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case s = 1. if testbitforzero(R1,b1) = 0
then next(s) =2
else next(s) =0

case s = 2: when(sync = 4) R2 = resetb(R2,b2)

Thus, the outputs are checked for equivalence at each cycle of the implementation.

4.2.2.2 Invariant Checking

Property checking is used for verifying that a design satisfies some specific
requirements. MDG tools allow checking of safety properties as invariants. Verification of
invariants is directly based on theachability analysigrocedure of the MDG tools. Given

a state machin®! and an invarian€, it is checked ifC holds in all reachable states Mf.

Following are two properties of the embedded software (Section 3.4.1), expressed as

invariants:

Property > if [- R1.bl] then [R2.b2=0]

Property 2 if [R1.bl] then [R2.b2=1]

Property 1 states that the fl&.b2is reset, given the condition that Itifl of register
R1lis reset. Property 2 states that the fRB.b2is set, given the condition that Hitl of

registerR1is set.

Each of thaf and thethenstatements is first transformed int®a&ected Formula(DF)
[14]. A DF can be represented in terms of a circuit. Thus, a property is represented by its
equivalent circuit form. The two circuits corresponding to a property are composed and run
concurrently with the state machine on which the property is to be checked. The output of

the circuit corresponding to the conditiaf) (statement is compared with the output of the
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circuit corresponding to thihenstatements. The equivalence between the two is checked

as an invariant.

4.2.2.3 Model Checking

Model checking is a technique to prove temporal properties on a design model under all
possible and allowable conditions. In MDG model checking, the properties are described
using a property specification language callaghg, which is a subset of a first-order
branching time temporal logic that supports abstract data representations. Both safety and
liveness properties can be expressebyjpg, however, only universal path quantification
is possible.

Following are two properties of the embedded software (Section 3.4.1), expressed in
Lmbe:

Property I AGQ(R1.b1=0)->( X(R2.b2=0)))

Property 2 AGQ(R1.b1=1)->( X(R2.b2=1))),

whereA is the universal path quantifier, a@J X are state quantifiersAG p) implies “For
all pathspis true in all states”. X q) implies “gis true in the succeeding state, from a given
state”.

Property 1 states that the fl&R.b2is reset in the succeeding state, given the condition
that bitb1 of registerR1is reset in some state. Property 2 states that theRag2is set in
the succeeding state, given thatdditof registerR1is set in some state.

The computation model is based on ASMs. To check a propartyt;pg on an ASM
M, first additional ASMsM; for basic sub-formulas op in which only the temporal

operatorX (next state) is allowed. These sub-formulas are cadledt let formulas In

32



general, it takes two steps to check a property expresseg,ig. The first step is to
automatically build additional ASMs that represent lext let formulasappearing in the
property, and then connect these additional ASMs to the original ASM. The property parser
developed in C, with Yacc&Lex is used for this step. The second step is to check a simpler
property on the composite machine. The MDG Model checker developed in Prolog within
the MDG package is used for this step. Further details on the MDG model checking

procedure is found in [57].
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Chapter 5

Case Study Application - PIC 16C71

The embedded system that is investigated in this work is the PIC16C71 microcontroller
[46], commercialized by Microchip Technology Inc., and its mouse controller application
software [45]. The hierarchical approach to modeling and verification is demonstrated on

this target system and the experimental results are presented.

5.1 The Target Embedded System

5.1.1 Hardware RT-level Architecture

The PIC16C71X family of microcontrollers fits perfectly in applications ranging from
security and remote sensors to appliance control and automotive. The EPROM technology
makes customization of application programs extremely fast and convenient. Low cost,
low power, high performance, ease of use and I/O flexibility make the PIC16C71X very
versatile even in areas where no microcontroller use has been considered before (e.g. timer

functions, serial communication, etc.).

The PIC16C71 is a low cost, high performance, 8-bit microcontroller, employing an
advanced RISC-like architecture (Figure 5.1). There are 36 8-bit wide general purpose
registers, 15 special function registers, a 13-bit wide program counter and a hardware stack.
The hardware stack is 8-level deep and has 36 bytes of RAM. The separate instruction and

data bus of the Harvard architecture allow a 14-bit wide instruction word with a separate 8-
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bit wide data. An instruction cycle consists of eight Q cycles (Q1 to Q8). A fetch cycle
begins with the program counter (PC) incrementing in Q1. The instruction is fetched from
the program memory and latched into the instruction register in Q5. This instruction is then
decoded and executed during the Q6, Q7, and Q8 cycles. Data memory is read during Q6
(operand read) and written during Q8 (destination write). All instructions execute in a

single instruction cycle except for program branches.

v Program Counter Databus
EPROM

Program L~ rorTA
Memory 8 Level Stack RAM
(13-bit) File
Program Registers
14 Bus
RAM Addr /' 9
Instruc@ Addr MUX N
’ Direct Addr 7 Indirect
Addr
FSRreg |<—
— STATUSreg <—
8
%

Instruction e. ;/

Decode & '
Control <= ALU

Figure 5.1: Microcontroller architecture (RT-level)

5.1.2 Instruction Set Architecture

The instruction set architecture (ISA) (Appendix A) consists of a total of 35 instructions

(reduced instruction set). The instruction set is highly orthogonal, that makes it possible to
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carry out any operation on any register using any addressing mode. The instruction set is

categorized into four general formats of operations (Figure 5.2):
* byte-oriented (instructions acting on two registers)
* literal (instructions acting on the working registey,
* bit-oriented (instructions acting on one bit of a register)
» control (instructions acting on the program courgey,

Each instruction is 14-bit wide and is divided into an OPCODE, which specifies the
instruction type and one or more OPERANDS, which further specify the operation of the
instruction. For byte-oriented instructionsyepresents a file register designator ahd
represents a destination designator. The file register designator specifies which file register
is to be used by the instruction. The destination designator specifies where the result of the
operation is to be placed. dfis zero the result is placed in teregister and if it is one the
result is placed in théregister specified in the instruction. For bit-oriented instructiéns,
represents a bit field designator which selects the number of the bit éréggster to be
used by the instruction. For literal operatiokggepresents an 8-bit immediate value. For

control operation& represents a 11-bit address.

5.1.3 Mouse Controller Software

The mouse is becoming increasingly popular as a standard pointing data entry device.
Various kinds of mice can be found on the market, such as optical mice, opto-mechanical
mice or trackball mice. Their basic mechanisms are very similar. The major electrical
components of a mouse are: Microcontroller, Photo-transistors, Infrared emitting diodes,

and Voltage conversion circuit. The mouse can be divided into several functional blocks
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(Figure 5.3): Control, Button detection, Motion detection, Interface signal generation
(typically, RS-232), and DC power supply. The intelligence of the mouse is provided by
the microcontroller, therefore the features and performance of a mouse is greatly related to

the microcontroller and the embedded program used to implement the function.

Byte-oriented fileregister operations

13 8 7 6 0

OPCODE d f (FILE#)

d =0 for destination W
d =1 for destination f

Bit-oriented fileregister operations
13 10 9 76 0

OPCODE b (Bit #) f (FILE#)

Literal and Control operations

13 8 7 0

OPCODE k (literal)

CALL and GOTO instructions

13 11 10 0

OPCODE k (literal)

Figure 5.2: General format for instructions in ISA

37



In the following, the implementation of a serial mouse using the PIC16C71 [46, 45] is
described. The major tasks performed by the embedded software are: Button scanning, X
and Y motion scanning, and formatting and sending data to the host. To achieve the above

mentioned goals the software is composed of three parts:
» Main program (Appendix B, Figure 1)
» SubroutineByte (Appendix B, Figure 2)

» SubroutineBit (Appendix B, Figure 3)

Quadrature Encoders
2 d p— } @
\‘
RS-232 Port
of Microcontroller
Host
o0 |10V DC Power Conversion +5V DC | E— 1
Circuit < o= [ —=c°
—0 o
Pushbuttons

Figure 5.3: Functional blocks of a serial mouse

TheMain program detects any changes in the button status and in the movement counts
and sets drigger flag TheMain program calls two subroutineByteandBit. The Main
calls theByte five times to send five bytes of datdhe Byte calls the subroutindit
periodically. The Byteconverts the parallel data formatted in i into a serial data on
the “Received Data’RD) pin and controls the status BD. If Trigger flagis clearRD will
always be high and no message will be sent even vByeis called. TheBit counts the
number of pulses from the outputs of the photo detectors and determines the direction of

movement.
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The routineBit has two subroutineBitx andBity. The subroutinditx tracks the right
and left movement of the mouse aBity tracks the up and down movement. A right
movement is detected whetData(XD) is zero during a positive edge of tik&lock(XC)
or whenXD is one during a negative edgeX€. TheBitl section ofBitx detects the former
condition for a right movemenXD being zero during a positive edgeXt). A Right Flag
being set indicates a movement to the right, and¥@®untgives the extent of the right
movement. The sectioBitO detects the latter condition for a right movemeXD(being
one during a negative edge ®). Similarly, an up movement is detected whéData
(YD) is zero during a positive edge of tNe€lock(YC) or whenYDis one during a negative
edge of YC. The Bit0 and Bitl sections ofBity detects the two conditions for an up

movement respectively and accordingly setUarFlag

5.2 Hierarchical Modeling of the Target System

5.2.1 RTL Architecture

The RTL netlist implementation of the microcontroller (Figure 5.1) is described using
MDG-HDL. A hierarchical description down to the MDG-HDL library of basic
components (see Chapter 2) is adopted. The 8-bit general purpose registers are modeled as
variables of abstract soworda8 The register file is described in terms of uninterpreted
access functionseead andwrite, with the particular register to be accessed being supplied
as an argument to the functions. The uninterpreted function syfataoblis used to model
the instruction fetch from the program memory. The ALU functions are expressed using
uninterpreted function symboliscreg decreg iorreg, setbit clearbit, testbit etc. The

system bus is modeled using the basic compodewmer. The 13-bit program counter is
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modeled as a variable of abstract seordal3 The Q cycles of an instruction are modeled
using a variable of concrete sowordc4 with enumeration {0,...., 15}, which can

accommodate the 8 cycles.

5.2.2 Instruction Set Architecture

The instructions in the instruction set of PIC 16C71 microcontroller (Appendix A) are
modeled as predicates using MDGs. The operations in the instructions are modeled using
uninterpreted functions, applied to the arguments of the instructions (predicates) as
follows: byte oriented operations ascreg decreg iorreg, movreg clearreg etc., bit
oriented operations asetbit clearbit, testbit etc., literal operations aaddlitw, andlitw,
iorlitw, etc., and control operations asll, gotg, return, etc. The instruction fetch is
modeled using the uninterpreted functifaich Decoding the operation, source and the
destination operands from the instruction are modeled using the uninterpreted functions

decodeopcode decodesrc op, anddecodedestn op respectively.

The model is illustrated below using the following two instructions: the instruction that
sets a particular bit (b) of a register (R) (BSF R b) [46], and the unconditional branch

instruction (GOTO K) [46]:

Assembly Instruction: BSFRb

MDG-HDL Model:

Definitions: var(R, worda8)

var(b, worda3)

function(  setbit , inputs[worda8, worda3], output[wordag])

Instruction: transform(inputs([R, b]), function( setbit ), output(R))
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Assembly Instruction: GOTOK

MDG-HDL Model:

Definitions: var(K, wordall)
var(pc, wordal3)

function(  goto , inputfwordal1], output[wordal3])

Instruction: transform(inputs([K]), function( goto ), output(pc))

5.2.3 Embedded Software Specification

The specification for the routindain and the two subroutinéd8yteandBit are derived
from their respective algorithmic flowcharts (Appendix B, Figures 1, 2, 3). They are
modeled as ASMs, given mainly by tabular representation of the transition and output

relations.

The state diagrams of the specification of Main, ByteandBit routines (Appendix B,
Figures 4, 5, 6) consists of 13, 11, and 17 states, respectively. The model uses the abstract
sortworda8for representing the registe®STAT Counter XCount YCount Data, and
RB. Concrete sonvordc3is used to address a particular bit in a register. The concrete sort
bool is used to specify (the value of) a particular bit of a register, WZlock YClock
XData, YDatg RD, Triggerflag RightflagandUpflag. The uninterpreted abstract functions
bitset[worda8% worda3 — worda§ andbitclear [worda8% worda3 - wordag are used
to set and reset a specific bit of a register respectively. A cross funstiegzerqworda8
- bool is used to test whether or not the contents of a register is reset. Similarly the cross

functionisbitzero[worda8x worda3 - bool] is used to test if a particular bit of a register

41



is reset. The concrete savbrdc4is used to represent the values of the cl8ak routines

Main andByte andwordc5is used to represent the valuesSah the routineBit.

5.2.4 Embedded Software Implementation

The specification of the routindain and the two subroutineByte and Bit are
implemented using the assembly language of PIC 16C71. The assembly implementation is
modeled as a set of instructions implementing the control behavior of the routines. They
are modeled as ASMs, given mainly by tabular representation of the transition and output
relations. The MDG ASM model consists of as many states as there are instructions, each
for implementing one instruction at a time. Thus the enumeratiopcaé equal to the
number of instructions in the routine. Since the model is too large to include here, the model
of the Bit1 section of theBit routine is shown in Fig. 5.4. Furthermore, the model uses the
same constants, and abstract and cross functions as in the specification model, which is

mandatory for equivalence checking using MDG tools.

5.3 Hierarchical Verification of the Target System

In this section, the bottomup approach for the hierarchical verification of the target
embedded system model is described, using the MDG tools. This section also shows how
the model is validated using the MDG tools. The experiments were conducted on a SUN
SPARC ULTRA 1 with 256 MB of main memory. The results are summarized in tables,
showing the performance statistics of the verifications, including CPU time, memory usage

and number of MDG nodes generated. The CPU time is the time used for compiling the

42



circuit descriptions and fareachability analysisincluding counterexample generation, if

necessary.

Assembly language program:

01: BTFSS RA.b2

02: GOTOBITO

03: BTFSC CSTAT.b2
04: GOTO BITY

05: INCF XCOUNT
06: BCF FLAGB.b3
07: BTFSS RA.b3

08: GOTOBITY

09: BSF FLAGB.b3
10: GOTOBITY

Notations:
BCF Ri.bj : clear bit j of register Ri
BSF Ri.bj : set bit j of register Ri

ASM model:

ToBITO ToBITO

O_ T 00 QC) G0

MDG-HDL model:

initialize pc =0

case pc=1: if (RA.b2=0)then next(pc) =2
else next(pc) =3

case pc=2: goto(BITO)

case pc =3: if (CSTAT.b2 =1) then next(pc) = 4
else next(pc) =5

casepc=4: goto(BITY)

case pc=5: inc(XCOUNT)
next(pc) = 6

case pc =6: reset(FLAGB.b3)
next(pc) =7

case pc=7: if (RA.b3 =0)then next(pc) =8
else next(pc) =9

case pc =8: goto(BITY)

case pc=9: set(FLAGB.b3)
next(pc) = 10

case pc =10: goto(BITY)

Figure 5.4: ASM and MDG model ofBitl of Bitx routine implementation
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5.0.1 Verification of the ISA

The contents of the program counter, program memory, instruction register, working
register, and the general purpose registers in the RTL architecture model are compared to
the respective in the instruction set model at every cycle Q =1, which is the ready state of
the target microcontroller. The above mentioned comparison is demonstrated using the

MDG equivalence checking procedure.

The following are the instructions that are used in the mouse controller program: INCF,
BSF, BCF, BTFSS, DECFSZ, BTFSC, GOTO, CALL and RETLW, which span all the
four categories of operation in the instruction set. The hardware of the target
microcontroller is verified to be implementing the above mentioned instructions in its

instruction set. The performance statistics of the verification are given in Table 5.1.

ificati Result of CPU time Memory No. of
Verification Verification (seconds) | usage (MB) | MDG Nodes
RTL against ISA successful 14.27 9.15 21940

Table 5.1: Performance statistics of microcontroller hardware verification

5.0.2 Equivalence Verification of the Embedded Software

A hierarchical approach is followed for the verification of the mouse controller
embedded software program. To start with, the subrouBnesandBity of the routineBit
are verified. The verified subroutines are then abstracted away and replaced by their
respective specifications, which have less states than their respective implementations,
shown in Figure 5.5. The routindzit, Byte and Main are verified hierarchically in this
manner, using the MDG equivalence checking procedure. This approach effectively

reduces the state space of the product machine and hence the verification CPU time.
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Further simplification is possible if the state of the calling routine, after the return from
the called routine, does not depend on the outputs of the called routine. In other words, if
the state of the calling routine is not changed by the called routine, then each of the routines
could be verified separately and independently of each other. In instances where this
simplification could be applied, it tremendously reduces the state space, and the models
become completely modular. Interested readers are referred to Appendix C for a formal

proof of the approach.

Futhermore, the routiniit is called eight times in the routirigyte and the routin®yte
is called five times in routin®&lain. Once aroutine is verified, it is redundant to verify every
time itis being called by another routine, since the verification implicitly checks the outputs

of a routine for all combinations of its inputs in all reachable states of the routine.

Outer Subroutine

Inner Subroutine
SPEC.
SPEC.
MPL. + IMPL.
1
BYTE/BIT/BITX

MAIN/BYTE/BIT

Figure 5.5: Hierarchical Verification Approach

Using the hierarchical approach, the equivalence between the behavioral specification

and the embedded assembly software of the Main, Byte and the Bit routines are verified.
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The equivalence checking d@itO of the routineBit showed an error in the assembly
language code. This was indicated by a counterexample generated by the MDG tools,
providing a trace leading to the software error. The error was found to be located in the
instruction 6 (Figure 5.4), the instruction 6 is to be BTFSC in place of BTFSS. This result
confirms with the one obtained in [54] using SMV. The erroneous instruction is corrected
in no time and the equivalence checking is run successfully on the subr8ittin&he rest

of the routines are verified successfully. Table 5.2 shows the performance statistics of the
equivalence verification (behavioral specification against assembly code implementation)

of each of the routines.

Verification of Rggult_of CPU time Counterex. Memory No. of
Verification (seconds) | gen. (seconds) usage (MB) | MDG Nodes
BITO of BITX successful 0.12 - 1.33 783
BIT1lof BITX (org) failed 0.18 0.43 1.30 918
BIT1of BITX (corr) | successful 0.11 - 2.05 783
BITX successful 0.10 - 7.57 357
BITO of BITY successful 0.21 - 1.33 783
BIT1 of BITY successful 0.17 - 1.66 783
BITY successful 0.07 - 7.57 357
BIT successful 1.00 - 2.56 3624
BYTE successful 21.8 - 1.04 26345
MAIN successful 25.67 - 6.11 38167

Table 5.2: Performance statistics of embedded software Verification

5.3.3 Invariant Checking of the Embedded Software

Properties are derived to test the status of the flags, in accordance with the primary
inputs, from the embedded software specification (Section 5.2.3). Below is shown two

properties of th&ightFlag expressed as invariants:

Property 1 if [RA.b2] [J[- CSTAT.b2] then [ - Rightflag]
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Property 2 if [RAb2] [[- CSTAT.b2] L[RAb2] then

[Rightflag]

RA.b2=1
CSTAT.b2=0

Figure 5.6: State machine corresponding to inputs RA.b2 =1, CSTAT.b2=0

Property 1 checks whether thiight Flagis reset, when the inputRA.b2= 1 and
CSTAT.b2 0. The environment state diagram for Property 1 is shown in Fig. 5.6. The state
machine in Fig. 5.6 is an instance of the state machine in Fig. 5.4, given the environment
thatRA.b2= 1 andCSTAT.b2= 0. Property 2 checks whether tRéght Flagis set, when
inputsRA.b2=1, CSTAT.b2 0 andXDATA= 0. Property 2 is similar to the CTL property

verified in [54].

The properties stated above of Rght Flagare checked on the flowchart specification

as well as the embedded assembly language implementation of the r8itiineing
invariant checking procedure of the MDG tools. The Property 1 succeeded on the
specification and the implementation state machines. Property 2 failed to succeed on the
implementation machine. The MDG tool generated a counterexample during the invariant
checking, which confirmed with the error located by the equivalence checking in Section
5.0.2. The instruction 6 was corrected and the property 2 was checked to hold good on the
corrected implementation machine. Table 5.3 shows the performance statistics for the

invariant checking.
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Property Verification Rt_é_sult_of CPUtime | Counterex. Memory No. of
on BIT Verification | (seconds)| gen. (seconds) usage (MB)| MDG Nodes
property 1| org. impl | successful 1.37 N/A 1.08 592
property 1| cor. impl | successful 1.34 N/A 1.06 567
property 1 spec successful 1.31 N/A 1.06 567
property 2| org. impl failed 1.44 0.10 1.10 711
property 2| cor. impl | successful 1.37 N/A 1.08 613
property 2 spec successful 1.46 N/A 1.07 588

Table 5.3: Performance statistics of invariant checking oBit

5.3.4 Model Checking of the Embedded Software

Model checking experiments were conducted to test the temporal properties of the
embedded software, using the MDG model checking procedure. Furthermore, the model
checking experiment given in [54] was re-verified using a recent version of the SMV tool,
running on a faster machine [47]. This experiment was conducted to have a comparison
with the MDG model checking experiments in terms of time and complexity. The

experiments were performed on SUN SPARC ULTRA 1 with 256 MB of main memory.

5.3.4.1 Model Checking using MDG Tools

Temporal properties of the embedded software are derived from the embedded software
specification (Section 5.2.3). Two of the properties that tests the status Bighéflag

expressed ilhy,pg are as follows:

Property I AGQ(RA.b2=0 & CSTAT.b2=1) ->( X(Rightflag ~ =0)))

Property 2 AQ(RA.b2=0 & CSTAT.b2=1 & XDATA=1) -> ( X(Rightflag ~ =1)))

Property 1 checks whether tRéght Flagis reset in the succeeding state, after the inputs

RA.b2=1 andCSTAT.bZ 0 are assigned. Property 2 checks whetheRlight Flagis set
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in the succeeding state, after inp&®A&.b2=1, CSTAT.b2 0 andXDATA= 0 are assigned.

Property 2 is similar to the CTL property verified in [54].

The model checking experiments are performed on the specification and the
implementation models of the subroutiBel of Bitx, to verify if the models confirm to the
above mentioned properties. The model checking of Property 2 on the implementation
model of the subroutine indicated a failure. The error was traced manually to be found in
instruction 6, and was corrected. The experiment was repeated successfully on the
corrected model of the subroutine, which confirmed with that shown in Section 5.0.2. Table
5.4 summarizes the performance statistics of the model checking experiments using MDG

model checking.

Property Verification on R9$u|t_0f CPU time | Memoryusage No. of
Bit1 of Bitx Verification (seconds) (MB) MDG Nodes
property 1 org. impl successful 0.160 1.48 1172
property 1 cor. impl successful 0.170 1.41 1175
property 1 spec successful 0.060 0.94 628
property 2 org. impl failed 0.250 1.51 1323
property 2 cor. impl successful 0.182 2.35 1250
property 2 spec successful 0.130 0.98 613

Table 5.4: Performance statistics of MDG model checking

5.3.4.2 Comparison with Model Checking using Cadence SMV

Cadence SMV [43] has been found to be quite effective in automatically verifying
properties of combinational logic and interacting finite state machines. It is a formal
verification system based on symbolic model checking [11]. It uses a Verilog hardware
description language to express the system model. The model is described in the boolean
level. The specification is expressed as CTL formulas. SMV uses the OBDD symbolic
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model checking algorithm to verify each of the CTL formulas on the Verilog model. SMV

also has a counterexample generation feature.

Temporal properties of the embedded software are derived from the embedded software
specification (Section 5.2.3). Two of the properties that tests the status &igihflag

expressed in CTL are as follows:

Property I AG(RA.b2=0 & CSTAT.b2=1) -> F (Rightflag =0))

Property 2 AGQ(RA.b2=0 & CSTAT.b2=1 & XDATA=1) -> F (Rightflag  =1)),

whereA is the universal path quantifier, ai@& F are state quantifiersAG p) implies “For
all pathspis true in all states”.K q) implies “q s true for one state in the future, from a given
state”. Property 1 checks whether tRaght Flagis reset in one state in the future, after the
inputsRA.b2=1 andCSTAT.b2= 0 are assigned. Property 2 checks whetheRight Flag
IS set in one state in the future, after inp&A.b2= 1, CSTAT.b2= 0 andXDATA= 0 are

assigned. Property 2 is similar to the CTL property verified in [54].

The model checking experiments are performed on the implementation model of the
subroutineBitl of Bitx, to verify if the model confirms to the above mentioned properties.
The model checking of Property 2 on the implementation model of the subroutine indicated
a failure. The counterexample trace indicated an error found in instruction 6. The error was
subsequently corrected and the experiment was repeated successfully on the corrected model
of the subroutine, which confirmed with that shown in Section 5.0.2. Table 5.5 summarizes

the performance statistics of the model checking experiments using SMV model checking.

BDD-based symbolic model checking requires the design to be described at the boolean

logic level, the state explosion caused by large datapath is often the bottleneck in applying
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symbolic model checking techniques. The MDG model checking raises the level of
abstraction, in which the model is described using ASMs, which are encoded using MDGs.
The verification of ASMs is based on state enumeration, the complexity of which is

independent of the width of the datapath.

Comparing the results obtained in Table 5.5 with that in Table 5.4, a remarkable
reduction in the size of the graphs and the CPU time is obtained with using MDGs.
Furthermore, Thiry and Claesen [54] report the verification of Property 2 oBitleutine,
run on a 486DX33 machine with 16 MB RAM. The verification time reported was 23
seconds. Table 5.2 shows the equivalence verification oBtheutine consumed only 1

second of CPU time. This demonstrates the ease and effectiveness in using MDG tools.

Property Ver_ificatior_l on Rggult_of CPU time No. of Nodes
Bit1 of Bitx Verification (seconds)

property 1 org. model successful 2.67 65721

property 1 cor. model successful 2.66 65692

property 2 org. model failed 4.79 77662

property 2 cor. model successful 2.84 62821

Table 5.5: Performance statistics of SMV model checking
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Chapter 6

Conclusions

While formal verification is an improvement over testing, it is only as good as the
specification used and the soundness of the proof. Also, the description of the target
systems, be it hardware or software, are only abstractions of the actual physical systems,
and are thus subject to error or over-simplification. While correctness cannot be
guaranteed, formal verification will nonetheless result in more reliable systems, reduced
maintenance, and better quality control. Formal verification allows for objective,
systematic review, because the formal descriptions, and the proof trace provide a

permanent record of why the designer thinks the system is correct.

Embedded systems are gaining widespread applications by the fact that they allow for
more flexibility and reconfigurability (the degree of which depends on the degree of the
partition) and reduced design cycle time. This work attempts to emphasize the imperative
need for verifying the reliability of such a system. It presents a hierarchical approach to
model and verify an embedded system at different levels of design abstraction, using the
MDG tools. The approach is demonstrated on a commercial microcontroller used in a
mouse controller application. Models are established for the RT level hardware and the
Instruction Set Architecture of the microcontroller, and the behavioral specification and its
implementation as the assembly code of the embedded mouse controller application
software, are presented using MDGs. Experiments are conducted using the equivalence

checking, property checking and the model checking features provided by the MDG tools,
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to verify the correctness of the hardware in implementing its ISA, and the correctness of
the embedded software in implementing its specification. The verification experiments

conducted on our models using the MDG tools concluded in few seconds of CPU time.

There are two essential differences between the approach proposed in this thesis and that
presented in [54]. In [54] the authors present a single model that simulates the execution of
the instructions in the embedded software on the RTL hardware, and verify a property on
this single model. The proposed hierarchical approach splits the system into four models,
each abstracted at different levels of the design hierarchy. This, in turn, splits the
verification task into two separate verification experiments, thus rendering the verification
approach less redundant, more modular, and easier debugging in case of errors. Moreover,
the single model in [54] is represented at the boolean level, using ROBDDs, while the
models presented in this thesis are elevated to higher levels of abstraction and represented
using MDGs. From the experimental point of view, [54] demonstrates the approach on a
single routine of an embedded software program. This thesis demonstrates the approach on
a complete embedded system. The relatively small CPU time and memory consumption
achieved in all the experiments demonstrate the efficiency of the use of abstract data types
and uninterpreted functions, as provided by MDGs, to handle the inherent complexities of

verifying a complete embedded system, in an automated environment.

At the same time, abstraction might lead to possible non-termination of state-
exploration. Generalization of the initial states, in certain cases, counteracts this problem.
A limitation from the application software point of view is that, an increase in the number
of conditional branches increases the chances of state explosion. Sipoefteesoftware

program has to be of concrete sort and can never be made abstract, this thesis shows two
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ways to reduce the state space per verification: one is to verify each of the routines in a
program separately, under certain conditions as stated in Section 5.0.2, and the other more
generic way is to replace the implementation of the verified routines with their respective
specifications in the calling routine. This shows that the MDG tool is more adapted to
hardware verification, and need some improvement to handle the enormity of the states that

could be found in a software program.

Representing our models in standard hardware description languages, namely VHDL,
which has been recently interfaced to the MDG tools, would further enhance the
applicability of the MDG tools for the verification of embedded systems and integrating it
into the hierarchical design process. This will also eliminate possible human errors during

hand translation of the design model into MDG-HDL model.
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Appendix A

PIC 16C71 Instruction Set

Cycles

14-bit Opcode

Instruction
Description

Mnemonic | Operands
Byte-oriented File Register Operations
ADDWF f, d Add W with f
ANDWF f, d AND W with f
CLRF f Clear f
CLRW - Clear W
COMF f, d Complement f
DECF f, d Decrement f
DECFSZ f, d Decrement f, Skip if 0
INCF f, d Increment f
INCFSZ f, d Increment f, Skip if O
IORWF f, d Inclusive OR W with f
MOVF f, d Move f
MOVWF f Move W to f
NOP - No Operation
RLF f, d Rotate Left f through Carry
RRF f, d Rotate Right f through Carry
SUBWF f, d Subtract W from f
SWAPF f, d Swap nibbles in f
XORWF f, d Exclusive OR W with f

PRPEPRRPRRERRRRERRERRERR
)

00 0111 dfff ffff
00 0101 dfff ffff
00 0001 I1fff ffff
00 0001 OxxXX XXXX
00 1001 dfff ffff
00 0011 dfff ffff
00 1011 dfff ffff
00 1010 dfff ffff
00 1111 dfff ffff
00 0100 dfff ffff
00 1000 dfff ffff
00 0000 1fff ffff
00 0000 0xx0 0000
00 1101 dfff ffff
00 1100 dfff ffff
00 0010 dfff ffff
00 1110 dfff ffff
00 0110 dfff ffff

Bit-oriented File Registe

r Operations

BCF f,b Bit Clear f 1 01 00bb bfff ffff
BSF f,b Bit Set f 1 01 01bb bfff ffff
BTFSC f,b Bit Test f, Skip if Clear 1(2) 01 10bb bfff ffff
BTFSS f,b Bit Test f, Skip if Set 1(2) 01 11bb bfff ffff
Literal and Control Operations

ADDLW k Add literal and W 1 11 111x kkkk kkkk
ANDLW k AND literal with W 1 11 1001 kkkk kkkk
CALL k Call Subroutine 2 10 Okkk kkkk kkkk
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 0100
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk
MOVLW k Move literal to W 1 11 00xx kkkk kkkk
RETFIE k Return from interrupt 2 00 0000 0110 1001
RETLW k Return with literal in W 2 11 01xx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEP - Go into standby mode 1 00 0000 0110 0011
SUBLW k Subtract W from literal 1 11 110x kkkk kkkk
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk
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Appendix B

Mouse Controller Embedded Software Application

MAIN

Initialize 1/0 port
Get initia button status

R

Button No

status
change?”
Yes

Set trigger flag

Yes

XCount=0?

Negate
XCount

Yes

Yes

Negate
Y Count

Upflag Set?

No

Data<-Button Byte
Call Routine BY TE

Data<-X-Coord Byte
Call Routine BY TE

Data<-X-Coord Byte
Call RoutineBYTE

Data<-Y-Coord Byte
Call RoutineBYTE

Data<-Y-Coord Byte
Call Routine BY TE

Set trigger flag

Figure 1: Flowchart specification ofMain routine
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BYTE
Count=0

Trigger flag
=1?

No

Call Routine BIT }«—

Trigger flag

'0’ ->RD pin
(Start Bit)

=1?

Shift LSB of data
to Carry

0 Carry
=17

1’ ->RD pin

Call Routine BIT
Count = Count + 1

No Count

=1?

Return to Caller

Figure 2: Flowchart specification ofByteroutine
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Xcount = Xcount + 1

Xcount = Xcount + 1

Reset RightFlag Reset RightFlag
0
XD =0/1? XD =0/1?
lo 1
Set RightFlag Set RightFlag

1
70 YC=0/1?
\ﬁYC

JF No

Yes

Ycount = Ycount + 1

No J

?

Yes

Ycount = Ycount + 1

Reset UpFlag Reset UpFlag

YD =0/1? \ YD =0/1?
0 1

Set UpFlag Set UpFlag

Delay 0.833 ms

Return to Caller

Figure 3: Flowchart specification ofBit routine
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©

Button Status
No Change

~

S2

~
J
J
~
/

e

Button
Chan

@
28

Q

/—\\ 3
c
@

XCount =0
78

()

XCount !=0

oy

(o)

Rightflag = 0

S8

)
| R
/
-
"~/

(e

YCount =0

YCount !=0

)

Upflag=1
KDM,

(o)

(o)

Upflag=0

(o)

HDQ

S13

Figure 4: State diagram of specification oMain routine
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@

Triggerflag=1

Triggerflag=0

()
@U

(o)
T

D \reraeo
T
O
ORO
(o)
N
caun 1= Gn) |

Figure 5: State diagram of specification oByte routine
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RAxc=1 RAxc=0

CSTAT.xc=1

CSTAT.xc=0 CSTAT.xc=1

XData=1 XData=0

XData=0 XData=1

CSTAT.yc=0 CSTATyc=1
s11 s14
YDaa=1/ . s5  ).YDaa=0

Figure 6: State diagram of specification oBit routine
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Appendix C

Proof of Hierarchical Approach

This section outlines a formal proof of the hierarchical approach to modeling and
verification of embedded software. The approach is illustrated on a simple typical

embedded software (Appendix C, Figure 1).

Let:
I be the set of all external inputs
O be the set of all outputs
S, Dbe the set of all states of the calling routine
S10 be the state of the calling routine when calling the subroutine
Sq1;1 Dbe the state of the calling routine when returning
from the subroutine
I, be the set of all inputs to the calling routine
0, be the set of all outputs of the calling routine
i»  be the set of all inputs to the subroutine
0, be the set of all outputs of the subroutine
Given that:

i2 is (Slo ] Il)

)] is (S]_O UJ 01)
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e Calling

| - Caled |
1 Routine

Routine — 2

Figure 1: Generic black box representation of Embedded Software routines

To Prove:

[J1 JS4 O is correct and Sy is correct

For all external inputs to the calling routine and the subroutine, and
for all states of the calling routine, it is guaranteed that the new state

of the calling routine and the external outputs are correct

Proof:
The routines are verified starting from the inner most subroutine,
and successively replacing the behavior of the verified subroutines in
the calling routine.
Verf.#1: Ui, 0, is verified
Verf.#2: iy Sy is verified

Verf.#3: iy Sy is verified

Deduction:
From Verf.#1 and Verf. #2,

[JS1g 0, is verified, for the values that affect o0,

71



[1S;¢ that does not affect o,, is don’t care
From Verf.#3, and
Since, i is (Sq1g L iy)

05 is (S19 Ll 09)

Thus, U1 IS, O and Sy, are proved to be correct

When the state of the calling (outer) routine is unaffected by the called
(inner) routine, then the verification and the proof process is further simplified

as shown below:

Let:
i1 be the set of all inputs of the routine #1
I, be the set of all inputs of the routine #2
I3 be the set of all inputs of the routine #3
0, be the set of all inputs of the routine #1
0, be the set of all inputs of the routine #2
03 be the set of all inputs of the routine #3
Given that:
I, is a subset of 04
i3 is a subset of (0; [J 0,)
To Prove:
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[Ji; ogis correct

Proof:

The routines are verified separately and independently of the other.

Verf.#1: [ i3, 03 is verified
Verf.#2: Uiy, 0, is verified
Verf.#3: [ iy, 0y is verified
Deduction:
From Verf.#1, Verf.#2, Verf.#3, and
Since, i, is a subset of 0;
i3 is a subset of (0; [J 0,)

Thus, U iy, o3 is proved to be correct
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